The given question is incomplete. The complete question is as follows.
Which of the following best helps explain why an increase in temperature increases the rate of a chemical reaction?
(a) at higher temperatures, high-energy collisions happen less frequently.
(b) at low temperatures, low-energy collisions happen more frequently.
(c) at higher temperatures, less-energy collisions happen less frequently.
(d) at higher temperatures, high-energy collisions happen more frequently
Explanation:
When we increase the temperature of a chemical reaction then molecules of the reactant species tend to gain kinetic energy. As a result, they come into motion which leads to more number of collisions within the molecules.
Therefore, chemical reaction will take less amount of time in order to reach its end point. This means that there will occur an increase in rate of reaction.
Thus, we can conclude that the statement at higher temperatures, high-energy collisions happen more frequently, best explains why an increase in temperature increases the rate of a chemical reaction.
Answer:
elecreonegativity is the attraction of a bonded atom for the pair of electrons in a covalent bond. this can occur if:
- the nuclear charges are different
- the atoms are different sizes
- the shared pair of electrons are closer to one nucleus than the other
Answer:
Mass of solid = 189.141 gram
Explanation:
Given:
Total volume = 93 ml
Mass of liquid = 33.7 gram
Density of liquid = 0.865 g/ml
Density of solid = 3.50 g/ml
Find:
Mass of solid = ?
Computation:
Volume of liquid = Mass of liquid / Density of liquid
Volume of liquid = 33.7 / 0.865
Volume of liquid = 38.9595 ml
Volume of solid = Total volume - Volume of liquid
Volume of solid = 93 - 38.9595
Volume of solid = 54.0405 ml
Mass of solid = Volume of solid × Density of solid
Mass of solid = 54.0405 ml × 3.50 g/ml
Mass of solid = 189.141 gram