Answer:
8.829 m/s²
Explanation:
M = Mass of Earth
m = Mass of Exoplanet
= Acceleration due to gravity on Earth = 9.81 m/s²
g = Acceleration due to gravity on Exoplanet



Dividing the equations we get

Acceleration due to gravity on the surface of the Exoplanet is 8.829 m/s²
Answer:
East component is: 18.64 m/s
Explanation:
If the resultant is 32.5 m/s directed 35 degrees east of north, then we use the sin(35) projection to find the east component of the velocity:
East component = 32.5 m/s * sin(35) = 18.64 m/s

= (18 x 10^-6 /°C)(0.125 m)(100° C - 200 °C)
= -0.00225 m
New length = L + ΔL
= 1.25 m + (-0.00225 m)
= 1.248
D
Answer:
A) 26V
Explanation:
(a) the potential difference between the plates
Initial capacitance can be calculated using below expresion
C1= A ε0/ d1
Where d1= distance between = 2.70 mm= 2.70× 10^-3 m
ε0= permittivity of space= 8.85× 10^-12 Fm^-1
A= area of the plate = 7.90 cm2 = 7.90 ×10^-4 m^2
If we substitute the values we
C1= A ε0/ d1
=( 7.90 ×10^-4 × 8.85× 10^-12 )/2.70× 10^-3
C1=2.589 ×10^-12 F= 2.59 pF
Initial charge can be determined using below expresion
q1= C1 × V1
V1=2.589 ×10^-12 F
V1= voltage=7.90 V
If we substitute we have
q1= 2.589 ×10^-12 × 7.90
q1= 20.45×10^-12C
20.45 pC
Final capacitance can be calculated as
C2= A ε0/ d2
d2=8.80 mm= /8.80× 10^-3
7.90 ×10^-4 × 8.85× 10^-12 )/8.80× 10^-3
C1=0.794 ×10^-12 F= 0.794 pF
Final charge= initial charge
q2=q1 (since the battery is disconnected)
q2=q1= 20.45 pC
Final potential difference
V2= q/C2
= 20.45/0.794
= 26V
Hello!
Let's begin by doing a summation of torques, placing the pivot point at the attachment point of the rod to the wall.

We have two torques acting on the rod:
- Force of gravity at the center of mass (d = 0.700 m)
- VERTICAL component of the tension at a distance of 'L' (L = 2.200 m)
Both of these act in opposite directions. Let's use the equation for torque:

Doing the summation using their respective lever arms:


Our unknown is 'theta' - the angle the string forms with the rod. Let's use right triangle trig to solve:

Now, let's solve for 'T'.

Plugging in the values:
