Answer:
One gallon of octane produces approximately 7000 L of carbon dioxide.
Note:
I believe that the mass of octane should have been given as 2661 g. However, I understand that your instructor probably gave you this problem, so I will use 4000 g for the approximate mass of one gallon of octane. You can rework the problem on your own, substituting the correct masses of octane if you wish.
Step1. You must first determine the number of moles that are in 4000 g of octane, using the molar mass of octane. Step 2. Then you must determine the number of moles of carbon dioxide that can be produced by that number of moles of octane, based on the mole ratio between octane and carbon dioxide in the balanced equation. Step 3. Then use the ideal gas law to determine the volume in liters of carbon dioxide that can be formed.
Answer is: -963,8 kJ.
Q₁ = m(Fe) · C · ΔT₁.
C - specific heat capacity of liquid iron, C(Fe) = 0,82 J/g°<span>C.
</span>m(Fe) = 575 g.
ΔT₁ = 1181 - 1825 = -644°C.
Q₁ = -859306,5 J = -859,3 kJ.
Q₂ = m(Fe) · C · ΔT₂.
ΔT₂ = 293 - 1181 = -888°C.
C - specific heat capacity, C(Fe) = 0,44 J/g°C.
Q₂ = -224664 J = -224,66 kJ.
Q₃ =- heat of fusion, ΔH = 209 J/g.
Q₃ = 120175 J = 120,17 kJ.
Q = Q₁ + Q₂ + Q₃ = -963,8 kJ.
from an external source of power
Explanation:
The energy needed for nuclear fusion comes from an external source of power.
Nuclear fusion is the combination of small sized atomic nuclei to form larger ones.
The reaction releases a huge amount of energy but also requires a large activation energy to start up.
- The energy input require to drive two nuclei into fusion comes from an external source.
- Nuclear fusion has a high activation energy which serves as the energy barrier for this reaction to take place.
- The energy comes from the surrounding and once initiated, spontaneous chain reactions are set up.
learn more:
Nuclear reactions brainly.com/question/10094982
#learnwithBrainly
The elements in Groups 1A(1) and 7A(17) are all quite reactive.
<h3>Major difference between Groups 1A(1) and 7A(17) : </h3>
Group 7's halogens, which are non-metal elements, become less reactive as you move down the group. In contrast to the alkali metals in Group 1 of the periodic table, this trend is the opposite. The most reactive element in Group 7 is fluorine.
Alkali metals are soft and reactive metals. They react vigorously with water and become more reactive. And other hand halogens are reactive non metals.
- Elements of group 1A are known as alkali metals. Elements of this group are lithium, sodium, potassium, rubidium, cesium.
- Reactivity increase down group 1 but decrease up group 7 this is because group 7 elements react by gaining an electron. As one move down the group, the amount of electron shielding increases, meaning that the electron is less attracted to the nucleus.
To know more about Groups 1A(1) and 7A(17) please click here :
brainly.com/question/13063502
#SPJ4
<h3><u>Answer;</u></h3>
A) Its temperature will fall continuously until it condensed into a liquid.
<h3><u>Explanation</u>;</h3>
- <em><u>Steam or water vapor is the gaseous state of liquid water. When water vapor above a temperature of 100 degrees Celsius is cooled, the temperature falls continuously, and it undergoes condensation at a temperature of 100 degrees Celsius and turns into liquid water.</u></em>
- The change of state from gaseous to liquid state occurs as a result of latent heat of vaporization that the water vapor carries.