Answer:
n = 2.58 mol
Explanation:
Given data:
Number of moles of argon = ?
Volume occupy = 58 L
Temperature = 273.15 K
Pressure = 1 atm
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
1 atm × 58 L = n × 0.0821 atm.L/ mol.K × 273.15 K
58 atm.L = n × 22.43 atm.L/ mol.
n = 58 atm.L / 22.43 atm.L/ mol
n = 2.58 mol
Answer:
C.) HOCl Ka=3.5x10^-8
Explanation:
In order to a construct a buffer of pH= 7.0 we need to find the pKa values of all the acids given below
we Know that
pKa= -log(Ka)
therefore
A) pKa of HClO2 = -log(1.2 x 10^-2)
=1.9208
B) similarly PKa of HF= -log(7.2 x 1 0^-4)= 2.7644
C) pKa of HOCl= -log(3.5 x 1 0^-8)= 7.45
D) pKa of HCN = -log(4 x 1 0^-10)= 9.3979
If we consider the Henderson- Hasselbalch equation for the calculation of the pH of the buffer solution
The weak acid for making the buffer must have a pKa value near to the desired pH of the weak acid.
So, near to value, pH=7.0. , the only option is HOCl whose pKa value is 7.45.
Hence, HOCl will be chosen for buffer construction.
Answer:
19.07 g mol^-1
Explanation:
The computation of the molecular mass of the unknown gas is shown below:
As we know that

where,
Diffusion rate of unknown gas = 155 mL/s
CO_2 diffusion rate = 102 mL/s
CO_2 molar mass = 44 g mol^-1
Unknown gas molercualr mass = M_unknown
Now placing these values to the above formula

After solving this, the molecular mass of the unknown gas is
= 19.07 g mol^-1
<span>If the aqueous solution is 34% Licl then it is 100 - 34% water = 66%
From the calculation we've found out that it is 66% water. Then we need to find the weight from a 250 g solution.
66/100 * 250 = 165g
Hence it is 165g</span>