The two half-reactions are...
Ag→Ag+
and...
NO3→NO
Let's start by balancing the first half-reaction...
Ag→Ag+
The amounts are already balanced; 1:1. The oxygens are balanced. So all that's left is to balance the charge...
Ag→Ag++e−
Now let's do the other equation... Amounts of nitrogen are balanced, so we first need to balance the oxygens...
NO3→NO
4H++NO3→NO+2H2O
Next, we need to balance charge...
4e−+4H++NO3→NO+2H2O
Now let's go ahead and rewrite each half-reaction after being balanced by themselves...
Ag→Ag++e−
4e−+4H++NO3→NO+2H2O
Now we need to multiply by some factor to get the electrons to cancel out. In this case, that factor is 4, which needs to be applied to the top half-reaction...
4(Ag→Ag++e−)=4Ag→4Ag++4e−
Then we combine this half-reaction with the second one above to get...
4Ag+4H++NO3→4Ag++NO+2H2O
Answer:
4.81 moles
Explanation:
The total pressure of the gas = Pressure at which gauge reads zero + pressure read by it.
Pressure at which gauge reads zero = 14.7 psi
Pressure read by the gauge = 988 psi
Total pressure = 14.7 + 988 psi = 1002.7 psi
Also, P (psi) = P (atm) / 14.696
Pressure = 1002.7 / 14.696 = 68.2297 atm
Temperature = 25 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (25 + 273.15) K = 298.15 K
Volume = 1.50 L
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
68.2297 atm × 1.5 L = n × 0.0821 L.atm/K.mol × 298.15 K
⇒n = 4.81 moles
Answer:
Kc = 8.05x10⁻³
Explanation:
This is the equilibrium:
2NH₃(g) ⇄ N₂(g) + 3H₂(g)
Initially 0.0733
React 0.0733α α/2 3/2α
Eq 0.0733 - 0.0733α α/2 0.103
We introduced 0.0733 moles of ammonia, initially. So in the reaction "α" amount react, as the ratio is 2:1, and 2:3, we can know the moles that formed products.
Now we were told that in equilibrum we have a [H₂] of 0.103, so this data can help us to calculate α.
3/2α = 0.103
α = 0.103 . 2/3 ⇒ 0.0686
So, concentration in equilibrium are
NH₃ = 0.0733 - 0.0733 . 0.0686 = 0.0682
N₂ = 0.0686/2 = 0.0343
So this moles, are in a volume of 1L, so they are molar concentrations.
Let's make Kc expression:
Kc= [N₂] . [H₂]³ / [NH₃]²
Kc = 0.0343 . 0.103³ / 0.0682² = 8.05x10⁻³
Answer:
See below
Explanation:
<u> Name </u> <u>Formula </u> <u> Major species </u> <u> </u>
Zinc iodide ZnI₂ H₂O(ℓ), I⁻(aq), Zn²⁺(aq),
Nitrogen(I) oxide N₂O H₂O(ℓ), N₂O(aq)
Sodium nitrite NaNO₂ H₂O(ℓ), Na⁺(aq), NO₂⁻(aq)
Glucose C₆H₁₂O₆ H₂O(ℓ), C₆H₁₂O₆(aq)
Nickel(II) iodide NiI₂ H₂O(ℓ), I⁻(aq), Ni²⁺(aq)
- Glucose and nitrogen(I) oxide are covalent compounds. They do not dissociate in solution.
- The compounds containing metals are ionic. They produce ions in solution.
- ZnI₂ and NiI₂ produce twice as many iodide ions as metal ions.