We know, I = F.Δt
As Δt is increased to 4 times, then, F would decrease to 4 times, in order to keep that impulse constant.
In short, Your force will change to 1/4th of it's initial value
Hope this helps!
Answer:
a. A = 0.0859 m^2
b. A = 0.0178 m^2
Explanation:
Two flat surfaces are exposed to a uniform, horizontal magnetic field of magnitude 0.47 T. When viewed edge-on, the first surface is tilted at an angle of from the horizontal, and a net magnetic flux of 8.4 103 Wb passes through it. The same net magnetic flux passes through the second surface. (a) Determine the area of the first surface. (b) Find the smallest possible value for the area of the second surface.
take note that the question has not specified th angle which the surface is tilted so i assume the angle is at
to the horizontal
flux = BAcos(
)
B=magnetic flux in Weber
A=area of the flat surface in m^2
=the angle to the horizontal
a) 8.4 x10^-3= (.47)Acos(78)
alpha has to be the angle from the normal and not the horizontal so 90-12=78,
8.4 x10^-3
/(.47)cos(78)
A = 0.0859 m^2
b) If flux remains the same then for it to be the smallest possible area it needs to be perpendicular to the magnetic field so alpha would be 0.
8.4 x10^-3 = (.47)Acos(0)
A = 0.0178 m^2
Answer:
The greater the difference in electronegativity between two covalently bonded atoms, the greater the bond's percentage of ionic character.
Explanation:
Bond polarity (i.e the separation of electric charge along a bond) and ionic character (amount of electron sharing) increase with an increasing difference in electronegativity.
Therefore, we can say that, the greater the difference in electronegativity between two covalently bonded atoms, the greater the bond's percentage of ionic character.
Answer: Increase in wave frequency
Explanation:
When we talk about acoustics we are dealing with sound waves, and one of their main components along with the velocity and wavelength is the <u>frequency.</u>
In this sense, the frequency of any wave refers to how fast (or slow) a wave oscillates. For example, in the especific case of sound waves when the oscillation is faster, the frequency is higher and the pitch gets higher as well.