Answer:0.302
Explanation:
Given
mass of crate m=27 kg
Force required to set crate in motion is 80 N
Once the crate is set in motion 56 N is require to move it with constant velocity
i.e. 80 N is the amount of force needed to just overcome static friction and 56 is the kinetic friction force
thus

where
is the coefficient of static friction and N is Normal reaction





Answer:
the ball's velocity was approximately 0.66 m/s
Explanation:
Recall that we can study the motion of the baseball rolling off the table in vertical component and horizontal component separately.
Since the velocity at which the ball was rolling is entirely in the horizontal direction, it doesn't affect the vertical motion that can therefore be studied as a free fall, where only the constant acceleration of gravity is affecting the vertical movement.
Then, considering that the ball, as it falls covers a vertical distance of 0.7 meters to the ground, we can set the equation of motion for this, and estimate the time the ball was in the air:
0.7 = (1/2) g t^2
solve for t:
t^2 = 1.4 / g
t = 0.3779 sec
which we can round to about 0.38 seconds
No we use this time in the horizontal motion, which is only determined by the ball's initial velocity (vi) as it takes off:
horizontal distance covered = vi * t
0.25 = vi * (0.38)
solve for vi:
vi = 0.25/0.38 m/s
vi = 0.65798 m/s
Then the ball's velocity was approximately 0.66 m/s
Answer:
<em>1.228 x </em>
<em> mm </em>
<em></em>
Explanation:
diameter of aluminium bar D = 40 mm
diameter of hole d = 30 mm
compressive Load F = 180 kN = 180 x
N
modulus of elasticity E = 85 GN/m^2 = 85 x
Pa
length of bar L = 600 mm
length of hole = 100 mm
true length of bar = 600 - 100 = 500 mm
area of the bar A =
=
= 1256.8 mm^2
area of hole a =
=
= 549.85 mm^2
Total contraction of the bar =
total contraction =
==>
= <em>1.228 x </em>
<em> mm </em>