Answer:
Fc = 89.67N
Explanation:
Since the rope is unstretchable, the total length will always be 34m.
From the attached diagram, you can see that we can calculate the new separation distance from the tree and the stucked car H as follows:
L1+L2=34m
Replacing this value in the previous equation:
Solving for H:

We can now, calculate the angle between L1 and the 2m segment:

If we make a sum of forces in the midpoint of the rope we get:
where T is the tension on the rope and F is the exerted force of 87N.
Solving for T, we get the tension on the rope which is equal to the force exerted on the car:

Every planet/moon has global wind that are mostly determined by the way the planet/moon rotates and how evenly the Sun illuminates it. On the Earth the equator gets much more Sun than the poles. resulting in warmer air at the equator than the poles and creating circulation cells (or "Hadley Cells") which consist of warm air rising over the equator and then moving North and South from it and back round.
The Earth is also rotating. When any solid body rotates, bits of it that are nearer its axis move slower than those which are further away. As you move north (or south) from the equator, you are moving closer to the axis of the Earth and so the air which started at the equator and moved north (or south) will be moving faster than the ground it is over (it has the rotation speed of the ground at the equator, not the ground which is is now over). This results in winds which always move from the west to the east in the mid latitudes.
Use the Inverse square law, Intensity (I)<span> of a light </span>is inversely proportional to the square of the distance(d).
I=1/(d*d)
Let Intensity for lamp 1 is L1 distance be D1 so on, L2 D2 for Intensity for lamp 2 and its distance.
L1/L2=(D2*D2)/(D1*D1)
L1/15=(200*200)/(400*400)
L1=15*0.25
L1=3.75 <span>candela</span>
Answer:A
Explanation:Find attached picture file for details