The molecule BH3 is trigonal planar, with B in the center and H in the three vertices. Ther are no free electrons. All the valence electrons are paired in and forming bonds.
There are four kind of intermolecular attractions: ionic, hydrogen bonds, polar and dispersion forces.
B and H have very similar electronegativities, Boron's electronegativity is 2.0 and Hydrogen's electronegativity is 2.0.
The basis of ionic compounds are ions and the basis of polar compounds are dipoles.
The very similar electronegativities means that B and H will not form either ions or dipoles. So, that discards the possibility of finding ionic or polar interactions.
Regarding, hydrogen bonds, that only happens when hydrogen bonds to O, N or F atoms. This is not the case, so you are sure that there are not hydrogen bonds.
When this is the case, the only intermolecular force is dispersion interaction, which present in all molecules.
Then, the answer is dispersion interaction.
Answer is: it takes 116,8 seconds to fall to one-sixteenth of its initial value
<span>
The half-life for the chemical reaction is 29,2 s and is
independent of initial concentration.
c</span>₀
- initial concentration the reactant.
c - concentration of the reactant remaining
at time.
t = 29,2 s.<span>
First calculate the rate constant k:
k = 0,693 ÷ t = 0,693 ÷ 29,2 s</span> = 0,0237 1/s.<span>
ln(c/c</span>₀) = -k·t₁.<span>
ln(1/16 </span>÷ 1) = -0,0237 1/s ·
t₁.
t₁ = 116,8 s.
Ho123 right I’m sorry of I’m wrong
Answer:
trigonal planar
Explanation:
The molecule SO3 is of the type AX3. The molecule is symmetrical and non polar.
There are three regions of electron density in the molecule. This corresponds to a trigonal planar geometry. This means that the three oxygen atoms are arranged at the corners of a triangle. The bond angle is 120 degrees.
Answer:
substitution is the best method or collecting like terms
Explanation: