The answer is 267.93 g
Molar mass of CaBr2 is the sum of atomic masses of Ca and Br:
Mr(CaBr2) = Ar(Ca) + 2Ar(Br)
Ar(Ca) = 40 g/mol
Ar(Br) = 79.9 g/mol
Mr(CaBr2) = 40 + 2 * 79.9 = 199.8 g/mol
The percentage of Br in CaBr2 is:
2Ar(Br) / Mr(CaBr2) * 100 = 2 * 79.9 / 199.8 * 100 = 79.98%
Now make a proportion:
x g in 79.98%
335 g in 100%
x : 79.98% = 335 g : 100%
x = 79.98% * 335 g : 100%
x = 267.93 g
<h2>Answer:</h2><h3>Part 1:</h3>
Location the element zinc (Zn) on the periodic table:
- Group number : 12
- Period number : 4
- Block : d block
- Element : Transition elements.
<h3>Part 2:</h3>
Protons in an atom of Zn: 30
<h3>Part 3:</h3>
Electrons in a Zn atom: 30
<h3>Part 4 :</h3>
Neutron in an atom of Zn: 35
<h3 />
If 30 grams of KCl is dissolved at 10°C, 14 g of KCl should be added to make a saturated solution at 60 °C.
<h3>What is a saturated solution?</h3>
A saturated solution is a solution in which there is so much solute that if there was any more, it would not dissolve. Its concentration is the same as the solubility at that temperature.
- Step 1. Calculate the mass of water.
At 10 °C, the solubility is 31.2 g KCl/100 g H₂O.
30 g KCl × 100 g H₂O/31.2 g KCl = 96 g H₂O
- Step 2. Calculate the mass of KCl required to prepare a saturated solution at 60 °C.
At 60 °C, the solubility is 45.8 g KCl/100 g H₂O.
96 g H₂O × 45.8 g KCl/100 g H₂O = 44 g KCl
- Step 3. Calculate the mass of KCl that must be added.
44 g - 30 g = 14 g
If 30 grams of KCl is dissolved at 10°C, 14 g of KCl should be added to make a saturated solution at 60 °C.
Learn more about saturated solutions here: brainly.com/question/24564260
Answer:
No, compound A and B are not the same compound
Explanation:
According to the law of definite proportion "every chemical compound contains fixed and constant proportions (by mass) of its constituent elements." (Encyclopedia Britannica)
We can see in the question that the ratio of flourine to sulphur in compound A is 1.18 while the ratio of flourine to sulphur in compound B is 2.37.
The two chemical compounds do not contain a fixed proportion by mass of their constituent elements therefore, they can not be same compound according to the law of definite proportions.