Answer:
40.92 m/s
Explanation:
The computation is shown below:
Ek = 1 ÷2mv²...............................(1)
v = √(2Ek/m).......................... (2)
Here EK denotes kinetic energy
m denotes mass
v denotes velocity
Given that
m = 0.25kg and Ek = 209.3J
So,
v = √(2×209.3 ÷0.25)
= √1674.4
= 40.92 m/s
All cells are living however organelles are not living there are no organisms that consist of just a single cell
Answer:
The height is 
A circular hoop of different diameter cannot be released from a height 30cm and match the sphere speed because from the conservation relation the speed of the hoop is independent of the radius (Hence also the diameter )
Explanation:
From the question we are told that
The height is 
The angle of the slope is 
According to the law of conservation of energy
The potential energy of the sphere at the top of the slope = Rotational kinetic energy + the linear kinetic energy

Where I is the moment of inertia which is mathematically represented as this for a sphere

The angular velocity
is mathematically represented as

So the equation for conservation of energy becomes
![mgh_s = \frac{1}{2} [\frac{2}{5} mr^2 ][\frac{v}{r} ]^2 + \frac{1}{2}mv^2](https://tex.z-dn.net/?f=mgh_s%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5B%5Cfrac%7B2%7D%7B5%7D%20mr%5E2%20%5D%5B%5Cfrac%7Bv%7D%7Br%7D%20%5D%5E2%20%2B%20%5Cfrac%7B1%7D%7B2%7Dmv%5E2)
![mgh_s = \frac{1}{2} mv^2 [\frac{2}{5} +1 ]](https://tex.z-dn.net/?f=mgh_s%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20mv%5E2%20%5B%5Cfrac%7B2%7D%7B5%7D%20%2B1%20%5D)
![mgh_s = \frac{1}{2} mv^2 [\frac{7}{5} ]](https://tex.z-dn.net/?f=mgh_s%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20mv%5E2%20%5B%5Cfrac%7B7%7D%7B5%7D%20%5D)
![gh_s =[\frac{7}{10} ] v^2](https://tex.z-dn.net/?f=gh_s%20%3D%5B%5Cfrac%7B7%7D%7B10%7D%20%5D%20v%5E2)

Considering a circular hoop
The moment of inertial is different for circle and it is mathematically represented as

Substituting this into the conservation equation above
![mgh_c = \frac{1}{2} (mr^2)[\frac{v}{r} ] ^2 + \frac{1}{2} mv^2](https://tex.z-dn.net/?f=mgh_c%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%28mr%5E2%29%5B%5Cfrac%7Bv%7D%7Br%7D%20%5D%20%5E2%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20mv%5E2)
Where
is the height where the circular hoop would be released to equal the speed of the sphere at the bottom



Recall that 


Substituting values

If an equation is dimensionally correct, it does not mean that the equation must be true. On the other hand, when the equation is dimensionally correct, the equation cannot be true. Dimensional analysis is a technique used to check whether a relationship is correct