The correct answer is 19.72 °C. The first step is to determine the amount of heat that was lost per gram (30,000 J) / (390 g) = 76.92 J/g. Then to determine the temperature change, divide 76.92 J/g with the given specific heat of milk (76.92 J/g) / (3.9 J/g°C) = 19.72 °C.
Answer:
Vertical velocity decreases.
Explanation:
The motion of the ball is a projectile ball, which consists of two independent motions:
- a horizontal motion, with constant velocity
- a vertical motion, with constant acceleration g=9.8 m/s^2 towards the ground
In the vertical motion, there is a constant acceleration directed downward: this means that the vertical velocity decreases as the ball goes higher. In fact, it decreases following the equation

And it decreases until the ball reaches its maximum height, then it starts increasing again.
To make a educational guess based on the your observations
Answer:
P = 17.28*10⁶ N
Explanation:
Given
L = 250 mm = 0.25 m
a = 0.54 m
b = 0.40 m
E = 95 GPa = 95*10⁹ Pa
σmax = 80 MPa = 80*10⁶ Pa
ΔL = 0.12%*L = 0.0012*0.25 m = 3*10⁻⁴ m
We get A as follows:
A = a*b = (0.54 m)*(0.40 m) = 0.216 m²
then, we apply the formula
ΔL = P*L/(A*E) ⇒ P = ΔL*A*E/L
⇒ P = (3*10⁻⁴ m)*(0.216 m²)*(95*10⁹ Pa)/(0.25 m)
⇒ P = 24624000 N = 24.624*10⁶ N
Now we can use the equation
σ = P/A
⇒ σ = (24624000 N)/(0.216 m²) = 114000000 Pa = 114 MPa > 80 MPa
So σ > σmax we use σmax
⇒ P = σmax*A = (80*10⁶ Pa)*(0.216 m²) = 17280000 N = 17.28*10⁶ N