One mole of Na2SO4 is 6.022 * 10^(23) molecules. We can divide this into the quantity in the question to find a value of 1.5/6.022 = 0.2491 moles. Rounded to two significant figures and put in scientific notation, we can rewrite this quantity as 2.5 * 10^(-1) moles
Explanation:
1.
Given parameters:
Frequency of the radiation = 8.4 x 10¹⁴Hz
Unknown:
Energy of the wave = ?
Solution:
The energy of a wave is given by the expression below;
E = hf
E is the energy
h is the Planck's constant = 6.63 x 10⁻³⁴m²kg/s
f is the frequency
Now insert the parameters and solve;
E = 6.63 x 10⁻³⁴m²kg/s x 8.4 x 10¹⁴Hz
E = 5.57 x 10¹ x 10⁻²⁰J
E = 5.57 x 10⁻¹⁹J
2.
Given parameters:
Wavelength = 2.13 x 10⁻¹³m
Unknown:
Frequency of the wave = ?
Solution:
The frequency of a wave can be determined using the expression;
C = f∧
C is the speed of light = 3 x 10⁸m/s
f is the frequency
∧ is the wavelength
f =
=
= 1.41 x 10²¹hz
Hi, you have not provided structure of the aldehyde and alkoxide ion.
Therefore i'll show a mechanism corresponding to the proton transfer by considering a simple example.
Explanation: For an example, let's consider that proton transfer is taking place between a simple aldehyde e.g. acetaldehyde and a simple alkoxide base e.g. methoxide.
The hydrogen atom attached to the carbon atom adjacent to aldehyde group are most acidic. Hence they are removed by alkoxide preferably.
After removal of proton from aldehyde, a carbanion is generated. As it is a conjugated carbanion therefore the negative charge on carbon atom can conjugate through the carbonyl group to form an enolate which is another canonical form of the carbanion.
All the structures are shown below.
Answer:
3 g/mL
Explanation:
We know that the density of an object can be measured by dividing its mass (g) to its volume (mL).
Formula
D=m/v
Given data:
Mass= 45 g
Volume= 15 mL
Now we will put the values in formula:
D=45 g/ 15 mL= 3 g/mL