Answers:
See below
Step-by-step explanation:
1. Most food energy
(a) Pringles
Heat from Pringles + heat absorbed by water = 0
m₁ΔH + m₂CΔT = 0
1.984ΔH + 100 × 4.184 × 18 = 0
1.984ΔH + 7530 = 0
ΔH = -7530/1.984 = -3800 J/g
(b) Cheetos
0.884ΔH + 418.4 × 13 = 0
ΔH = -5400/0.884 = -6200 J/g
Cheetos give you more food energy per gram.
(c) Snickers
Food energy = 215 Cal/28 g × 4184 J/1 Cal = 32 000 J/g
The food energy from Cheetos is much less than that from a Snickers bar
2. Experimental uncertainty
The experimental values are almost certainly too low.
Your burning food is heating up the air around it, so much of the heat of combustion is lost to the atmosphere.
3. Percent efficiency
Experimental food energy = 3800 J/g
Actual food energy = 150 Cal/28 g × 4184 J/1 Cal = 22 000 J/g
% Efficiency = Experimental value/Actual value × 100 %
= 3800/22 000 × 100 %
= 17 %
Adding more hydrogen gas to the system or decreasing the volume of the container that the system is in. Le Chatelier's principle supports this.
Answer:
cellular respiration. C6H12O6 + 6O2 → 6CO2 + 6H2O.
Explanation:
the process where cells convert chemical energy and/or nutrients into ATP and then the cells release the waste.
Answer:
B is most volatile, A is least volatile
Explanation:
Ionic compounds are compounds that are formed together by a cation and an anion. A cation is an ion with a positive charge. For example, Na+ and Ca2+. An ion has a negative charge, like Cl- and OH-. There is a greater chance of forming an ionic compound when they have a great difference in electronegativity, the ability to attract electrons toward itself. In the periodic table, elements that are opposite to each other, more likely found in opposite sides, would be more apt to form an ionic compound. Example would be NaCl and CaCl2 or Ca(OH)2.