Answer:
Amplitude: 4
Period: π
midline: y = 1
Step-by-step explanation:
r(x) = -4 sin(2x) + 1
r(x) = a sin(bx + c) + d where |a| is the amplitude and |b| for the period
a = -4 |a| = 4 : Amplitude = <u>4</u>
b = 2 |b| = 2 period of sin(x) = 2π
period of sin(bx + c) = 2π/|b| = 2π/2 = <u>π</u>
range of sin(2x) ... -1 ≤ sin(2x) ≤ 1
range of -4 sin(2x) + 1: -4+1 ≤ -4 sin(2x) + 1 ≤ 4+1
-3 ≤ -4 sin(2x) + 1 ≤ 5
midline: y = (-3 + 5) / 2 = 1 y = 1