1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
n200080 [17]
3 years ago
7

Radiation present in the environment but not produced by humans is called ______.

Physics
1 answer:
mafiozo [28]3 years ago
5 0

Answer:

background

Explanation:

You might be interested in
What is projectile motion caused by?
Lemur [1.5K]
Gravity acts to influence the vertical motion of the projectile, thus causing a vertical acceleration. The horizontal motion of the projectile is the result of the tendency of any object in motion to remain in motion at constant velocity.
6 0
3 years ago
Read 2 more answers
Which two substances have no fixed shape and no fixed volume?
fenix001 [56]

Answer:

Gas like oxygen, nitrogen etc

4 0
3 years ago
A charge of 25 nC is uniformly distributed along a straight rod of length 3.0 m that is bent into a circular arc with a radius o
Greeley [361]

Answer:

E = 31.329 N/C.

Explanation:

The differential electric field dE at the center of curvature of the arc is

dE = k\dfrac{dQ}{r^2}cos(\theta ) <em>(we have a cosine because vertical components cancel, leaving only horizontal cosine components of E. )</em>

where r is the radius of curvature.

Now

dQ = \lambda rd\theta,

where \lambda is the charge per unit length, and it has the value

\lambda = \dfrac{25*10^{-9}C}{3.0m} = 8.3*10^{-9}C/m.

Thus, the electric field at the center of the curvature of the arc is:

E = \int_{\theta_1}^{\theta_2} k\dfrac{\lambda rd\theta  }{r^2} cos(\theta)

E = \dfrac{\lambda k}{r} \int_{\theta_1}^{\theta_2}cos(\theta) d\theta.

Now, we find \theta_1 and \theta_2. To do this we ask ourselves what fraction is the arc length  3.0 of the circumference of the circle:

fraction = \dfrac{3.0m}{2\pi (2.3m)}  = 0.2076

and this is  

0.2076*2\pi =1.304 radians.

Therefore,

E = \dfrac{\lambda k}{r} \int_{\theta_1}^{\theta_2} cos(\theta)d\theta= \dfrac{\lambda k}{r} \int_{0}^{1.304}cos(\theta) d\theta.

evaluating the integral, and putting in the numerical values  we get:

E = \dfrac{8.3*10^{-9} *9*10^9}{2.3} *(sin(1.304)-sin(0))\\

\boxed{ E = 31.329N/C.}

4 0
3 years ago
At t=0, a block A of mass 8 kg and block B of mass 16 kg are both at position x=0 . Block A is at rest, and block B is moving at
love history [14]

The center of mass of the two objects is the average position of the parts of the two object system

The center of mass of block <em>A</em>, and block <em>B</em>  after displacement of block <em>B</em> is at <u>20 m from block </u><u><em>A</em></u>

<em />

Reason:

The given parameters are;

The position of block A and block B at t = 0 is x = 0

The mass of block A, m₁ = 8 kg

Mass of block B, m₂ = 16 kg

Speed of block <em>A</em> = 0 m/s

Speed of block <em>B</em>, v₂ = 10 m/s

Location of the center of mass of the two object at t = 3 s; Required

Solution;

The location of block <em>A</em>, after 3 s is x₁ = 0 (block A is at rest)

The location of block <em>B</em>, = v₂ × t

The location of block <em>B</em>, after 3 s is x₂ = 10 m/s × 3 s = 30 m

The center of mass of two masses are given as follows;

x_{cm} = \dfrac{m_1 \cdot x_1 +m_2\cdot x_2}{m_1 + m_2}

x_{cm} = \dfrac{8  \times0 + 16 \times  30}{8 + 16} = 20

The center of mass of the two objects is at at the position x = <u>20 m</u> (from block <em>A</em>)

Learn more about the center of mass here:

brainly.com/question/18557256

brainly.com/question/20714030

brainly.com/question/17088562

4 0
3 years ago
A small sphere with mass m is attached to a massless rod of length L that is pivoted at the top, forming a simple pendulum. The
USPshnik [31]

Answer:

a) see attached, a = g sin θ

b)

c)   v = √(2gL (1-cos θ))

Explanation:

In the attached we can see the forces on the sphere, which are the attention of the bar that is perpendicular to the movement and the weight of the sphere that is vertical at all times. To solve this problem, a reference system is created with one axis parallel to the bar and the other perpendicular to the rod, the weight of decomposing in this reference system and the linear acceleration is given by

          Wₓ = m a

          W sin θ = m a

          a = g sin θ

b) The diagram is the same, the only thing that changes is the angle that is less

                θ' = 9/2  θ

             

c) At this point the weight and the force of the bar are in the same line of action, so that at linear acceleration it is zero, even when the pendulum has velocity v, so it follows its path.

The easiest way to find linear speed is to use conservation of energy

Highest point

            Em₀ = mg h = mg L (1-cos tea)

Lowest point

          Emf = K = ½ m v²

          Em₀ = Emf

          g L (1-cos θ) = v² / 2

              v = √(2gL (1-cos θ))

4 0
3 years ago
Other questions:
  • A snowball is rolling down a hill at 4.5 m/s and accumulating snow as it goes. Its diameter begins at 0.50 m and ends at the bot
    11·1 answer
  • The charge on the square plates of a parallel-plate capacitor is Q. The potential across the plates is maintained with constant
    12·1 answer
  • A very loud train whistle has an acoustic power output of 100 W. If the sound energy spreads out spherically, what is the intens
    10·1 answer
  • An object with a mass of 21 kilograms is lifted through a distance of 7 meters how much work is done
    15·1 answer
  • A plank of length L and mass M hangs from an axle passing through one end. The other end is allowed to hang down so that it just
    5·1 answer
  • What are other words for saying that a wave is "transmitted" through a medium?​
    12·1 answer
  • Air enters a nozzle steadily at 2.21 kg/m3 and 20 m/s and leaves at 0.762 kg/m3 and 150 m/s. If the inlet area of the nozzle is
    12·2 answers
  • Which is a characteristic of an amorphous solid?
    11·1 answer
  • what material can be stored in a container but can also flow from one container to another and it forms powder after some time​
    13·1 answer
  • If you are good at activities that require agility, what are you able to do well?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!