Answer:
Four charges of equal magnitude sitting at the vertices of a square
Explanation:
We can arrive at such a situation by thinking of a simple example first, a configuration of two charges. The force acting on the middle point of a straight line joining the two points(charges) will be zero. That is, the net Electric field will be zero as they cancel out being equal in magnitude and opposite in direction.
Now, we can extend this idea to a square having charge q at each vertex. If we put 'p' at the geometric center, we can see that the Electric fields along the diagonals cancel out due to the charges at the diagonally opposite vertices(refer to the figure attached). Actually, the only requirement is that the diagonally opposite charges are equal.
We can further take this to 3 dimensions. Consider a cube having charges of equal magnitude at each vertex. In this case, the point 'p' will yet again be the geometric center as the Electric field due to the diagonally opposite charges will cancel out.
Answer:
a. 37.7 kgm/s b. 0.94 m/s c. -528.85 J
Explanation:
a. The initial momentum of block 1 of m₁ = 1.30 kg with speed v₁ = 29.0 m/s is p₁ = m₁v₁ = 1.30 kg × 29.0 m/s = 37.7 kgm/s
The initial momentum of block 2 of m₁ = 39.0 kg with speed v₂ = 0 m/s since it is initially at rest is p₁ = m₁v₁ = 39.0 kg × 0 m/s = 0 kgm/s
So, the magnitude of the total initial momentum of the two-block system = (37.7 + 0) kgm/s = 37.7 kgm/s
b. Since the blocks stick together after the collision, their final momentum is p₂ = (m₁ + m₂)v where v is the final speed of the two-block system.
p₂ = (1.3 + 39.0)v = 40.3v
From the principle of conservation of momentum,
p₁ = p₂
37.7 kgm/s = 40.3v
v = 37.7/40.3 = 0.94 m/s
So the final velocity of the two-block system is 0.94 m/s
c. The change in kinetic energy of the two-block system is ΔK = K₂ - K₁ where K₂ = final kinetic energy of the two-block system = 1/2(m₁ + m₂)v² and K₁ = final kinetic energy of the two-block system = 1/2m₁v₁²
So, ΔK = K₂ - K₁ = 1/2(m₁ + m₂)v² - 1/2m₁v₁² = 1/2(1.3 + 39.0) × 0.94² - 1/2 × 1.3 × 29.0² = 17.805 J - 546.65 J = -528.845 J ≅ -528.85 J
Answer:
The mass of the baked loaf will be less than the dough.
Explanation: When heat is applied to food substance or products like the one pound the substance or material gains a higher temperature, the increase in temperature causes moisture inherent or added to the product in this case the one pound dough to be lost, the one pound dough prepared at room temperature, once it is placed inside the oven at 350 degrees Fahrenheit it will lose moisture in the form of vapor to the environment as noticed in the aroma, the moisture lost will eventually reduce it mass/weight (kilograms or grams) by some percentage or quantities(kilograms or grams)
As per Newton's III law we can say that
Force applied by object 1 on object 2 is always equal in magnitude and opposite in direction of the force that object 2 apply on object 1.
So we can say it as

now here above question is based upon the same
if a bag of vegetables applied a force F = 22.5 N of the surface stand the the same surface will apply same magnitude of force in opposite direction on the vegetables bag
So our answer will be F = 22.5 N (upwards).