Answer:
The bond dissociation energy to break 4 bonds in 1 mol of CH is 1644 kJ
Explanation:
Since there are 4 C-H bonds in CH₄, the bond dissociation energy of 1 mol of CH₄ is 4 × bond dissociation energy of one C-H bond.
From the table one mole is C-H bond requires 411 kJ, that is 411 kJ/mol. Therefore, 4 C-H bonds would require 4 × 411 kJ = 1644 kJ
So, the bond dissociation energy to break 4 bonds in 1 mol of CH₄ is 1644 kJ
<span>The type of bond that a
Phosphorous pentachloride have is an Ionic Bonding. It is a form of chemical
bond that encompasses the electrostatic attraction between oppositely charged
ions which serves as the primary interaction happening in ionic compound. Phosphorus
has 5 valence electrons and Chlorine has 7 valence electrons. Phosphorus contributes
1 electron to each chlorine and all the 6 achieve 8 electrons in the outer
shell thus creating an ionic bond.</span>
Answer:
The composition of air this is because it vmade up of oxygen, nitrogen, Nobel gages and Carbon dioxide
The oxidation is occurring on Calcium ions as it release one electron and reduction will be occurring on fluorine ion as it accepts one electron.
<u>Explanation:</u>
An element will undergo oxidation and form a positive ion on releasing one or more electrons from its valence shell. While reduction is occurred in a chemical reaction, then the element will be forming a negative ion with the acceptance of one or more electrons in its valence shell.
So in the given process of calcium fluoride, the one electron from the valence shell of calcium will be released making it as
ions and this is termed as oxidation process. This one electron will be getting accepted by the fluorine ion and thus it will convert to
ions. This process of acceptance of electrons is termed as reduction.