Once it becomes balanced.
Sodium potassium pump is an active pump which transfer sodium and potassium ions across the membrane with the expenditure of energy in the form of ATP.
This kind of pump is generally used in nerve cells.
The pump works against the concentration gradient as the pump moves three Na+ ions outside the cell and two K+ ions inside the cell, though there is a high concentration of Na+ outside the cell and a low concentration of K+ outside the cell.
Answer:
See Explanation
Explanation:

Hence the mass defect is;
[235.04393 + 1.00867] - [ 136.92532 + 96.91095 + 2(1.00867)]
= 236.0526 - 235.85361
= 0.19899 amu
Since 1 amu = 1.66 * 10^-27 Kg
0.19899 amu = 0.19899 * 1.66 * 10^-27 = 3.3 * 10^-28 Kg
Binding energy = Δmc^2
Binding energy = 3.3 * 10^-28 Kg * (3 * 10^8)^2 = 2.97 * 10^-11 J
ii) 
Hence the mass defect is;
[10.01294 + 1.00867] - [7.01600 + 4.00260]
= 11.02161 - 11.0186
= 0.00301 amu
Since 1 amu = 1.66 * 10^-27 Kg
0.00301 amu = 0.00301 * 1.66 * 10^-27 = 4.997 * 10^-30 Kg
Binding energy = Δmc^2
Binding energy = 4.997 * 10^-30 Kg * (3 * 10^8)^2 = 4.5 * 10^-13 J
Answer:
c = 0.0432moldm ^−3
Explanation:
The first step would be to find the molar ratio in the reaction. Now generally, one can simplify strong acid-strong base reaction by saying:
Acid+Base ->Salt+ Water