Answer:
1.2x10⁻⁵M = Concentration of the product released
Explanation:
Lambert-Beer's law states the absorbance of a solution is directly proportional to its concentration. The equation is:
A = E*b*C
<em>Where A is the absotbance of the solution: 0.216</em>
<em>E is the extinction coefficient = 18000M⁻¹cm⁻¹</em>
<em>b is patelength = 1cm</em>
<em>C is concentration of the solution</em>
<em />
Replacing:
0.216 = 18000M⁻¹cm⁻¹*1cm*C
<h3>1.2x10⁻⁵M = Concentration of the product released</h3>
Multiply 10.49 by 12.993. that should be it. 130 grams ish?
Answer:
The answer to your question is below
Explanation:
Factors that affect the rate of a chemical reaction
- Temperature If the temperature increases the rate of reaction increases.
- Concentration The reaction will move where there less concentration it could be to the reactants of products.
- Particle size The lower the particle size the higher the rate of reaction.
- Catalyst Catalyzers accelerate the rate of reaction
- Pressure The reaction will move where there are fewer molecules.
Answer:
Carbon, germanium, tin and lead.
Explanation:
The silicon is belong to the carbon family. There are five elements in carbon family carbon, silicon, germanium, tin and lead. These five elements are present in same group i.e group fourteen. The elements present in same group have same number of valance electrons.
For example.
Carbon electronic configuration:
C₆ = [He] 2s² 2p²
Silicon electronic configuration:
Si₁₄ = [Ne] 3s² 3p²
Germanium electronic configuration:
Ge₃₂ = [Ar] 3d¹⁰ 4s² 4p²
Tin electronic configuration:
Sn₅₀ = [Kr] 4d¹⁰ 5s² 5p²
Lead electronic configuration:
Pb₈₂ = [Xe] 4f¹⁴ 5d¹⁰ 6s² 6p²
we can see that in case of all elements there are four valance electrons, which are equal to the valance electrons of silicon.
The answer is homogeneous mixture. It is a mixture which has uniform composition and properties all throughout. Mixtures can be separated by physical processes. Mixtures are systems that consist of two or more substances which are mixed but not chemically combined.