1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anarel [89]
3 years ago
8

A car starts from rest and speeds up at 2.2m/s^2 after the traffic light turns green , how far will it have gone when it os trav

eling at 18m/s?
PLZ write down the steps and the equation you used and thx <3
Physics
1 answer:
alex41 [277]3 years ago
3 0

73.6m

Explanation:

Initial velocity, U = 0

moving velocity, V = 18m/s

 Acceleration = 2.2m/s²

Unknown:

Distance covered = ?

Solution:

 we have to use the appropriate equation of motion to solve this problem

           V² = U² +2as

    V is the final velocity

    U is the initial velocity

     a is the acceleration

     s is the distance

  since u = 0

             V² = 2as

             18²  = 2 x 2.2 x s

            324 = 4.4s

                  s = \frac{324}{4.4} = 73.6m

Learn more:

Motion brainly.com/question/2607086

#learnwithBrainly

You might be interested in
An electron moving to the left at 0.8c collides with a photon moving to the right. After the collision, the electron is moving t
SVETLANKA909090 [29]

Answer:

Wavelength = 2.91 x 10⁻¹² m, Energy = 6.8 x 10⁻¹⁴

Explanation:

In order to show that a free electron can’t completely absorb a photon, the equation for relativistic energy and momentum will be needed, along the equation for the energy and momentum of a photon. The conservation of energy and momentum will also be used.

E = y(u) mc²

Here c is the speed of light in vacuum and y(u) is the Lorentz factor

y(u) = 1/√[1-(u/c)²], where u is the velocity of the particle

The relativistic momentum p of an object of mass m and velocity u is given by

p = y(u)mu

Here y(u) being the Lorentz factor

The energy E of a photon of wavelength λ is

E = hc/λ, where h is the Planck’s constant 6.6 x 10⁻³⁴ J.s and c being the speed of light in vacuum 3 x 108m/s

The momentum p of a photon of wavelenght λ is,

P = h/λ

If the electron is moving, it will start the interaction with some momentum and energy already. Momentum of the electron and photon in the initial and final state is

p(pi) + p(ei) = p(pf) + p(ef), equation 1, where p refers to momentum and the e and p in the brackets refer to proton and electron respectively

The momentum of the photon in the initial state is,

p(pi) = h/λ(i)

The momentum of the electron in the initial state is,

p(ei) = y(i)mu(i)

The momentum of the electron in the final state is

p(ef) = y(f)mu(f)

Since the electron starts off going in the negative direction, that momentum will be negative, along with the photon’s momentum after the collision

Rearranging the equation 1 , we get

p(pi) – p(ei) = -p(pf) +p(ef)

Substitute h/λ(i) for p(pi) , h/λ(f) for p(pf) , y(i)mu(i) for p(ei), y(f)mu(f) for p(ef) in the equation 1 and solve

h/λ(i) – y(i)mu(i) = -h/λ(f) – y(f)mu(f), equation 2

Next write out the energy conservation equation and expand it

E(pi) + E(ei) = E(pf) + E(ei)

Kinetic energy of the electron and photon in the initial state is

E(p) + E(ei) = E(ef), equation 3

The energy of the electron in the initial state is

E(pi) = hc/λ(i)

The energy of the electron in the final state is

E(pf) = hc/λ(f)

Energy of the photon in the initial state is

E(ei) = y(i)mc2, where y(i) is the frequency of the photon int the initial state

Energy of the electron in the final state is

E(ef) = y(f)mc2

Substitute hc/λ(i) for E(pi), hc/λ(f) for E(pf), y(i)mc² for E(ei) and y(f)mc² for E(ef) in equation 3

Hc/λ(i) + y(i)mc² = hc/λ(f) + y(f)mc², equation 4

Solve the equation for h/λ(f)

h/λ(i) + y(i)mc = h/λ(f) + y(f)mc

h/λ(f) = h/lmda(i) + (y(i) – y(f)c)m

Substitute h/λ(i) + (y(i) – y(f)c)m for h/λ(f)  in equation 2 and solve

h/λ(i) -y(i)mu(i) = -h/λ(f) + y(f)mu(f)

h/λ(i) -y(i)mu(i) = -h/λ(i) + (y(f) – y(i))mc + y(f)mu(f)

Rearrange to get all λ(i) terms on one side, we get

2h/λ(i) = m[y(i)u(i) +y(f)u(f) + (y(f) – y(i)c)]

λ(i) = 2h/[m{y(i)u(i) + y(f)u(f) + (y(f) – y(i))c}]

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

Calculate the Lorentz factor using u(i) = 0.8c for y(i) and u(i) = 0.6c for y(f)

y(i) = 1/[√[1 – (0.8c/c)²] = 5/3

y(f) = 1/√[1 – (0.6c/c)²] = 1.25

Substitute 6.63 x 10⁻³⁴ J.s for h, 0.511eV/c2 = 9.11 x 10⁻³¹ kg for m, 5/3 for y(i), 0.8c for u(i), 1.25 for y(f), 0.6c for u(f), and 3 x 10⁸ m/s for c in the equation derived for λ(i)

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

λ(i) = 2(6.63 x 10-34)/[(9.11 x 10-31)(3 x 108){(5/3)(0.8) + (1.25)(0.6) + ((1.25) – (5/3))}]

λ(i) = 2.91 x 10⁻¹² m

So, the initial wavelength of the photon was 2.91 x 10-12 m

Energy of the incoming photon is

E(pi) = hc/λ(i)

E(pi) = (6.63 x 10⁻³⁴)(3 x 10⁸)/(2.911 x 10⁻¹²) = 6.833 x 10⁻¹⁴ = 6.8 x 10⁻¹⁴

So the energy of the photon is 6.8 x 10⁻¹⁴ J

6 0
3 years ago
How does the suns energy contribute to the carbon cycle
netineya [11]

Answer:

Plants are a good starting point when looking at the carbon cycle on Earth. Plants have a process called photosynthesis that enables them to take carbon dioxide out of the atmosphere and combine it with water. Using the energy of the Sun, plants make sugars and oxygen molecules.

8 0
3 years ago
Read 2 more answers
A chemist needs to order an element that will not react with any other element. Which element should he order
Gwar [14]

Answer:

Helium

Explanation:

Helium is the least reactive element, since it is a noble gas with the smallest amount of valence rings.

4 0
3 years ago
Describe the difference between distance, position, and displacement
nata0808 [166]

Answer:

Explanation:

<em>Position is the location of the object (whether it's a person, a ball, or a particle) at a given moment in time.</em>

<em>Displacement is the difference in the object's position from one time to another.</em>

<em>Distance is the total amount the object has traveled in a certain period of time.</em>

<em />

<em>I hope this helps!</em>

<em />

5 0
2 years ago
Sound travels through water at a speed of 1500 m/s. If the frequency of a sound is 1000 Hz, what is the wavelength?
ratelena [41]

Answer:

1.5m

Explanation:

Velocity=1500m/s

Frequency=1000hz

Wavelength =velocity ➗ frequency

wavelength =1500 ➗ 1000

Wavelength=1.5m

3 0
3 years ago
Other questions:
  • Work output of a large machine in a factory is 89,000 joules, and it’s input is 102,000 joules. Work output of a similar machine
    14·2 answers
  • An object thrown in the air has a velocity after t seconds that can be described by v(t) = -9.8t + 24 (in meters/second) and a h
    11·1 answer
  • An electric heating element is connected to a 110 V circuit and a current of 3.2 A is flowing through the element. How much ener
    6·2 answers
  • Two particles each have the same mass but particle #1 has four times the charge of particle #2. Particle #1 is accelerated from
    12·1 answer
  • A model used for the yield y of an agricultural crop as a function of the nitrogen level n in the soil (measured in appropriate
    10·1 answer
  • An unknown substance has a mass of 11.9 g . When the substance absorbs 1.071×102 J of heat, the temperature of the substance is
    15·1 answer
  • The pitch of a sound wave is its wavelength<br> True or false
    13·2 answers
  • Please help..!
    7·1 answer
  • DON'T ANSWER IF YOU DON'T KNOW
    5·2 answers
  • I need help with #24 ASAP .. I have to get it done today
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!