The only correct statement on the list is choice-A./
Answer:
A) B = 24 ft
B) H = 24.08 ft
C) M.A = 12.04
D) P = 13.7 lb
Explanation:
A)
Minimum allowable length of base of ramp can be found as follows:
Slope = H/B
where,
Slope = 1/12
H = Height of Ramp = 2 ft
B = Length of Base of Ramp = ?
Therefore,
1/12 = 2 ft/B
B = 2 ft * 12
<u>B = 24 ft</u>
B)
The length of the slope of ramp can be found by using pythagora's theorem:
L = √H² + B²
where,
H = Perpendicular = height = 2 ft
B = Base = Length of Base of Ramp = 24 ft
L = Hypotenuse = Length of Slope of Ramp = ?
Therefore,
H = √[(2 ft)² + (24 ft)²]
<u>H = 24.08 ft</u>
D)
The mechanical advantage of an inclined plane is given by the following formula:
M.A = L/H
M.A = 24.08 ft/2 ft
<u>M.A = 12.04</u>
D)
Another general formula for Mechanical Advantage is:
M.A = W/P
where,
W = Ideal Load = 165 lb
P = Ideal Effort Force = ?
Therefore,
12.04 = 165 lb/P
P = 165 lb/12.04
<u>P = 13.7 lb</u>
Answer:

Explanation:
The gravitational force exerted on the satellites is given by the Newton's Law of Universal Gravitation:

Where M is the mass of the earth, m is the mass of a satellite, R the radius of its orbit and G is the gravitational constant.
Also, we know that the centripetal force of an object describing a circular motion is given by:

Where m is the mass of the object, v is its speed and R is its distance to the center of the circle.
Then, since the gravitational force is the centripetal force in this case, we can equalize the two expressions and solve for v:

Finally, we plug in the values for G (6.67*10^-11Nm^2/kg^2), M (5.97*10^24kg) and R for each satellite. Take in account that R is the radius of the orbit, not the distance to the planet's surface. So
and
(Since
). Then, we get:

In words, the orbital speed for satellite A is 7667m/s (a) and for satellite B is 7487m/s (b).
Answer:
A ball being dropped to the ground