Voltage = Current x Resistance
<span>Voltage(?) = 100 x 1.98x10^-4 ohms </span>
<span>Voltage = Current x Resistance </span>
<span>Voltage(?) = 250 x 2.09x10^-4 ohms </span>
<span>Voltage = Current x Resistance </span>
<span>Voltage(?) = 100 x 3.44x10^-4 ohms</span>
Answer:

Explanation:
The speed is by definition the distance traveled divided over the time it takes to travel that distance. In this case, this distance is the circumference of the wheel, so we have:

where we have written the circumference in terms of its radius.
For our values we then obtain the value:

Answer:
from the position of the center of the Sun
Explanation:
As we know that mass of Sun and Jupiter is given as


distance between Sun and Jupiter is given as

now let the position of Sun is origin and position of Jupiter is given at the position same as the distance between them
so we will have


from the position of the center of the Sun
Answer:
1.5024
Explanation:
Draw a diagram. Put the two cells in series. Now draw 3 resistors. Two of them equal 0.26 ohms each. The third one is the lightbulb which is 12 ohms.
R = 0.26 + 0.26 + 12 = 12.52
The bulb has a voltage of 2.88 volts across it. You can get the current from that.
i = E / R
i = 2.88 / 12 =
i = 0.24 amps.
Now you can get the voltage drop across the two cells.
E = ?
R = 0.26
i = 0.24 amps
E = 0.26 * 0.24
E = 0. 0624
Finally divide the 2.88 by 2 to get 1.44
Each cell has an emf of 1.44 + 0.0624 = 1.5024
The observable universe consists of galaxies and other matter that can, principally, be seen from Earth because the light signals have had time to reach us. Not everything in the sky is the way it is when we see it, because of the distance the light travels to reach us.
Hope this helps :)