Answer:
C. 26.4 kJ/mol
Explanation:
The Chen's rule for the calculation of heat of vaporization is shown below:
![\Delta H_v=RT_b\left [ \frac{3.974\left ( \frac{T_b}{T_c} \right )-3.958+1.555lnP_c}{1.07-\left ( \frac{T_b}{T_c} \right )} \right ]](https://tex.z-dn.net/?f=%5CDelta%20H_v%3DRT_b%5Cleft%20%5B%20%5Cfrac%7B3.974%5Cleft%20%28%20%5Cfrac%7BT_b%7D%7BT_c%7D%20%5Cright%20%29-3.958%2B1.555lnP_c%7D%7B1.07-%5Cleft%20%28%20%5Cfrac%7BT_b%7D%7BT_c%7D%20%5Cright%20%29%7D%20%5Cright%20%5D)
Where,
is the Heat of vaoprization (J/mol)
is the normal boiling point of the gas (K)
is the Critical temperature of the gas (K)
is the Critical pressure of the gas (bar)
R is the gas constant (8.314 J/Kmol)
For diethyl ether:



Applying the above equation to find heat of vaporization as:
![\Delta H_v=8.314\times307.4 \left [ \frac{3.974\left ( \frac{307.4}{466.7} \right )-3.958+1.555ln36.4}{1.07-\left ( \frac{307.4}{466.7} \right )} \right ]](https://tex.z-dn.net/?f=%5CDelta%20H_v%3D8.314%5Ctimes307.4%20%5Cleft%20%5B%20%5Cfrac%7B3.974%5Cleft%20%28%20%5Cfrac%7B307.4%7D%7B466.7%7D%20%5Cright%20%29-3.958%2B1.555ln36.4%7D%7B1.07-%5Cleft%20%28%20%5Cfrac%7B307.4%7D%7B466.7%7D%20%5Cright%20%29%7D%20%5Cright%20%5D)

The conversion of J into kJ is shown below:
1 J = 10⁻³ kJ
Thus,

<u>Option C is correct</u>
Answer:
0.007 g of deprenyl dose is required fro the patient with body mass of 70 kilograms.
Explanation:
The dose for treating Parkinson’s disease = 100 μg/kg body weight
Mass of patient's body = 70 kg
Amount of dose of deprenyl required = 100 μg/kg × 70 kg = 7,000 μg
1 μg = 0.00001 g
7,000 μg = 7,000 × 0.000001 g = 0.007 g
0.007 g of deprenyl dose is required fro the patient with body mass of 70 kilograms.
Solids maintain their shape, whereas fluids do not because <span>the molecules in solids maintain a regular pattern and only vibrate, or move very slowly. The correct option among all the options that are given in the question is the last option or option "d". I hope the answer has come to your help.</span>
They both have two electron shells. Period indicates number of shells.
Answer:
ΔH°_rxn = -195.9 kJ·mol⁻¹
Explanation:
4NH₃(g) + 3O₂(g) ⟶ 2N₂(g) +6H₂O(g)
ΔH°_f/(kJ·mol⁻¹): -45.9 0 0 -241.8
The formula relating ΔH°_rxn and enthalpies of formation (ΔH°_f) is
ΔH°_rxn = ΣΔH°_f(products) – ΣΔH°_f(reactants)
ΣΔH°_f(products) = -6(241.8) = -1450.8 kJ
ΣΔH°_f(reactants) = -4(45.9) = -183.6 kJ
ΔH°_rxn = (-1450.8 + 183.6) kJ = -1267.2 kJ