1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Flura [38]
2 years ago
12

Which of these is NOT an Element of Art?

Mathematics
1 answer:
lesantik [10]2 years ago
6 0

Answer:

i think line?

Step-by-step explanation:

im not sure but thatts my best geuss!

You might be interested in
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
What’s the answer to this question
salantis [7]
B. 10 years, 5% APR
it’s telling me to type more words so ignore this part.
8 0
3 years ago
Select ALL of the following scenarios that can be modeled by the equation 3t−6=17 .
Ne4ueva [31]
The answer is: <span>If you triple the number of miles Karin lives from the school and then add six, you get 17 miles.</span>
4 0
3 years ago
On two investments totaling $11,500, Peter lost 3% on one and earned 4% on the other. If his net annual receipts were $⁢201, how
BlackZzzverrR [31]
Total amount of money invested - $11500
X +Y = $11500. ----------(1)
Total yearly interest for thetwo a/c is - $201
-0.03X + 0.04Y = $201
Form (1)
X = 11500 - Y
Substitute for X
-0.03(11500 - Y) + 0.04 Y = $201
-345 + 0.03Y + 0.04Y =201
0.07Y = 546
Y = 7800 at 4 %
Calculate X
X = 11500 - Y
= 11500 - 7800
=3700 at - 3%
Check
-0.03×3700 + 0.04 × 7800 = $201
-111 + 312 = $201
$201 = $201
6 0
3 years ago
you have a bag full of 17 marbles. Of those marbles, 3 are black. What is the probability that a marble chosen is not black
sdas [7]
Total number of marbles = 17

3 are black.

Not black = 17 - 3 = 14.

Probability of not black =          Number not black / Total

                                       =     14 / 17
3 0
3 years ago
Other questions:
  • The amount of postage placed on a first class letter depends on the weight of the letter .
    12·1 answer
  • Elysia added -218+(-395) and got a sum of -613.Which best explains whether or not Elysia sum is reasonable?​
    9·1 answer
  • X^2 +6x+30 in vertex form
    8·2 answers
  • I lullaby to has a weight limit of one time. There are three people inside the elevator. Each person weighs 150 pound. How many
    15·1 answer
  • Write an expression for calculation double the product of 4 and 7
    5·1 answer
  • Please help me on this one i need it
    13·1 answer
  • What is the difference of (-3x-9) and (-5x-2)
    14·1 answer
  • -5 + 5=. (-10) + 10=
    13·1 answer
  • Find the solution to the following system using substitution or elimination: y = 3x + 7 y = -2x-3 O A. (1,10) O B. (-2,1) C. (1.
    15·2 answers
  • Jennifer had $24 to spend on five pens. After buying them she had $14. How much did each pen cost?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!