Answer:
Time period for Simple pendulum, 
Explanation:
The Simple Pendulum
Consider a small bob of mass
is tied to extensible string of length
that is fixed to rigid support. The bob is oscillating in the plane about verticle.
Let
is the angle made by string with vertical during oscillation.
Vertical component of the force on bob,
Negative sign shows that its opposing the motion of bob.
Taking
as very small angle then, 
Let
is the displacement made by bob from its mean position ,
then, 
so,
........(1)
Since, pendulum is in hormonic motion,
as we know, 
where
is the constant and 
.........(2)
From equation (1) and (2)


Since, 


Explanation:
Neutral carbon-12 (or any carbon atom) has 6 electrons with a total negative charge of 6e- orbiting a nucleus with a total positive charge of 6e+, so that the total net charge is zero. The nucleus is made up of 6 protons, each with a positive charge of e+, and 6 neutrons, each with zero charge.
Answer:
Diffraction: Wave Theory
Interference: Wave Theory
Reflection: both particles and wave theories
Refraction: both particles and wave theories
The change in gravitational potential energy is A) 15.68 J
Explanation:
The gravitational potential energy of an object is the energy possessed by the object due to its position in the gravitational field.
The change in gravitational potential energy of an object is given by the equation:

where
m is the mass of the object
is the acceleration due to gravity
is the change in height of the object
In this problem, we have
m = 2 kg is the mass of the frame
is the change in height
Substituting, we find:

Learn more about potential energy:
brainly.com/question/1198647
brainly.com/question/10770261
#LearnwithBrainly
Answer:
It's only 1.11 m/s2 weaker at 400 km above surface of Earth
Explanation:
Let Earth radius be 6371 km, or 6371000 m. At 400km above the Earth surface would be 6371 + 400 = 6771 km, or 6771000 m
We can use Newton's gravitational law to calculate difference in gravitational acceleration between point A (Earth surface) and point B (400km above Earth surface):

where G is the gravitational constant, M is the mass of Earth and r is the distance form the center of Earth to the object





So the gravitational acceleration at 400km above surface is only 0.885 the gravitational energy at the surface, or 0.885*9.81 = 8.7 m/s2, a difference of (9.81 - 8.7) = 1.11 m/s2.