If an automobile moving at high speed suddenly comes to a stop, you would have a large change in momentum. This relates to Newton's second law in the form F = delta p / delta t, where p is momentum (mv).
You could lessen the effect of the sudden stop on the passengers by changing the average force exerted on them. If you look at Newton's second law again, you can see that given some delta p, you can decrease F by increasing delta t. What this means is that if you increase the length of time over which the change in momentum occurs, you can decrease the average force exerted to obtain that change in momentum. This is the reason why landing on a soft cushion is preferable to landing on a concrete surface. The cushion gives way to any object falling on it while still providing some resistance (you don't stop as abruptly), so while your change in momentum is the same in both cases, you have a larger delta t in the case of the cushion.
Objects want to continue doing what they’re doing because they are “lazy.” This is called law of inertia.
Newton's first law of motion states that an object at rest or uniform motion in a straight line will continue in that state unless it is being acted upon by an external force. This law is also called the law of inertia because it depends on mass.
<em>From the given question, we can </em><em>fill gaps </em><em>as follows;</em>
Objects want to continue doing what they’re doing because they are “lazy.” This is called law of inertia.
Learn more about Newton's first law of motion here: brainly.com/question/10454047
It's momentum is twice as much.