Answer:
19.8 kg of C₂H₂ is needed
Explanation:
We solve this by a rule of three:
If 1251 kJ of heat are relased in the combustion of 1 mol of acetylene
95.5×10⁴ kJ of heat may be released by the combustion of
(95.5×10⁴ kJ . 1) /1251kJ = 763.4 moles of C₂H₂
Let's convert the moles to mass → 763.4 mol . 26 g/1 mol = 19848 g
If we convert the mass from g to kg → 19848 g . 1kg / 1000g = 19.8 kg
Answer : The value of
for the reaction is, -565.6 kJ
Explanation :
First we have to calculate the molar mass of CO.
Molar mass CO = Atomic mass of C + Atomic mass of O = 12 + 16 = 28 g/mole
Now we have to calculate the moles of CO.

Now we have to calculate the value of
for the reaction.
The balanced equation will be,

From the balanced chemical reaction we conclude that,
As,
of CO release heat = 10.1 kJ
So, 2 mole of CO release heat = 
Therefore, the value of
for the reaction is, -565.6 kJ (The negative sign indicates the amount of energy is released)
Https://us-static.z-dn.net/files/d49/33d4ec86853ef95e6f6c14242c663be4.png
In an exothermic reaction, heat is transferred to the surrounding.
Hope this helps, have a great day ahead!
pH of 0.40M triethylammonium chloride is 5.90.
<h3>What is pH?</h3>
A solution's acidity may be determined by looking at its pH, which is a measurement of hydrogen ion concentration. Pure water slightly separates into ions with roughly equal amounts of hydrogen and hydroxyl (OH) ions. [H+] is 107 for a neutral solution, or pH = 7.
<h3>Given : </h3>
Concentration of triethylammonium chloride = 0.40M
pH = ?
<h3>Solution: </h3>
(CH3CH2)3NHCl ------> (CH3CH2)3NH⁺ + Cl⁻
(CH3CH2)3NH⁺ will react with water to give H3O⁺ .
(CH3CH2)3N will have a Kb = 5.2 x 10 ^(-4)
Kw = Kb x Ka
=> Ka = Kw / Kb = 10^(-14) / 5.2 x 10 ^(-4)
=> Ka = 1.92 x 10^(-11)
so by the reaction we have ,
Ka = x²/(0.40 - x)
=> x = 1.2393 x 10 ^(-6)
now, pH = -log( [H3O⁺]) = - log ( 1.2393 x 10 ^(-6)) = 5.906
To learn more about pH :
brainly.com/question/15289741
#SPJ4