Answer:
I think its B but I may be wrong
Static frictional force = ƒs = (Cs) • (Fɴ)
2.26 = (Cs) • m • g
2.26 = (Cs) • (1.85) • (9.8)
Cs = 0.125
kinetic frictional force = ƒκ = (Cκ) • (Fɴ)
1.49 = (Cκ) • m • g
1.49 = (Cκ) • (1.85) • (9.8)
Cκ = 0.0822
B. is the answer.
C is not correct because the light is actually reflected off of an opaque object.
The formula for the energy in a capacitor , u in terms of q and c is q²/2c
<h3>What is the energy of a capacitor?</h3>
The energy of a capacitor u = 1/2qv where
- q = charge on capacitor and
- v = voltage across capacitor.
<h3>What is the capacitance of a capacitor?</h3>
Also, the capacitance of a capacitor c = q/v where
- q = charge on capacitor and
- v = voltage across capacitor.
So, v = q/c
<h3>
The formula for energy of the capacitor in terms of q and c</h3>
Substituting v into u, we have
u = 1/2qv
= 1/2q(q/c)
= q²/2c
So, the formula for the energy in a capacitor , u in terms of q and c is q²/2c
Learn more about energy in a capacitor here:
brainly.com/question/10705986
#SPJ12
During the phase transition vapour --> liquid water, the temperature of the water does not change; the molecules of water release heat and the amounf of heat released is equal to

where
m is the mass of the water

is the latent heat of evaporation.
For water, the latent heat of evaporation is

, while the mass of the water is

so, the amount of heat released in the process is