Answer:
τ=0.060 N.m
Explanation:
By kinematics:

Solving for α:

where ωo = 600*2*π/60; ωf = 0; t=10s

The sum of torque is:



OK.
But first we need to know . . .
-- Where is Riverdale ?
-- What is the air temperature there right now ?
-- What kind of system is being used now ?
-- Where can we get a complete description of the groundwater system ?
79 m/s. A stone dropped from the top of the Empire State Building will have a velocity of 79 m/s just before it strikes the ground.
This problem is about free fall, to find the velocity of the stone before it strikes the ground we have to use the equation
, the initial velocity of the stone is 0 m/s. Then:


Solving the equation above with g = 9.8 m/s², and h = 318.0 m:

≅ 79 m/s
Answer:
It would be the 10 lb ball.
Explanation:
The more that an object weighs, the more force that is needed to accelerate it.
Hope this helped
:)
Answer:
The magnitud of the velocity is

and the direccion:
degrees from the horizontal.
Explanation:
Fist we define our variables:

The letters i and j represent the direction of the movement, i in this case is the horizontal direction, and j is perpendicular to i.
velocities with sub-index 1 are the speeds before the crash, and with sub-index 2 are the velocities after the crash.
Using conservation of momentum:

Clearing for the velocity of the stone after the crash:

Substituting known values:

The magnitud of the velocity is :

and the direction:

this is -28.3 degrees from the +i direction or the horizontal direcction.
Note: i and j can also be seen as x and y axis.