Answer:
The answer is "Option b".
Explanation:
Given equation and value:


calculating equation value:


To get the molarity you need to follow this equation
moles of solute
Molarity (M = -----------------------
Liters of solution
But before you apply that equation you need to find the moles of solute and the liters of solution. Follow this equation
Na2SO4 + BaCl2 = BaSO4 + 2 NaCl
Solution
Moles of BaSO4 = 5.28 g
---------------
233.43 g / mol
= 0.0226 moles
Moles of NaSO4 = 0.0226
0.0226 mole
Molarity = -----------------
0.250 L
= 0.0905 mol / L
So the answer is 0.0905 mol / L
Answer:
97 000 g Na
Explanation:
The absortion (or liberation) of energy in form of heat is expressed by:
q=m*Cp*ΔT
The information we have:
q=1.30MJ= 1.30*10^6 J
ΔT = 10.0°C = 10.0 K (ΔT is the same in °C than in K)
Cp=30.8 J/(K mol Na)
If you notice, the Cp in the question is in relation with mol of Na. Before using the q equation, we can find the Cp in relation to the grams of Na.
To do so, we use the molar mass of Na= 22.99g/mol

Now, we are able to solve for m:
=97 000 g Na
Answer:
In chemical bonding: Arrangement of the elements. The horizontal rows of the periodic table are called periods. Each period corresponds to the successive occupation of the orbitals in a valence shell of the atom, with the long periods corresponding to the occupation of the orbitals of a d subshell.
Explanation: