Answer:
The empirical formula is Ag2O.
The empirical formula is Ag2O.Explanation:
The empirical formula is Ag2O.Explanation:The empirical formula is the simplest whole-number ratio of atoms in a compound.
The empirical formula is Ag2O.Explanation:The empirical formula is the simplest whole-number ratio of atoms in a compound.The ratio of atoms is the same as the ratio of moles. So our job is to calculate the molar ratio of Ag to 2O.
do the steps ...
To get this into an integer ratio, we divide both numbers by the smaller value.
From this point on, I like to summarize the calculations in a table.
ElementAgMass/gXMolesXllRatiomllIntegers
—————————————————−———mAgXXXm7.96Xm0.07377Xll2.00mmm2
mlOXXXXl0.59mm0.0369Xml1mmmml1
There are 2 mol of Ag for 1 mol of O.
Calcium is used to isolate Rb from molten RbX because calcium has a smaller atomic radius than rubidium.
A chemical element's atomic radius, which is typically the average or typical distance between the nucleus's core and the outermost isolated electron, serves as a gauge for the size of an atom. There are numerous non-equivalent definitions of atomic radius since the border is not a clearly defined physical entity. Van der Waals radius, ionic radius, metallic radius, and covalent radius are the four most frequently used definitions of atomic radius. Atomic radii are typically measured in a chemically bound condition since it is challenging to isolated individual atoms in order to measure their radii individually.
Learn more about atomic radius here:
brainly.com/question/13607061
#SPJ4
Answer:
Collisions between gas particles are elastic; there is no net gain or loss of kinetic energy.
Explanation:
When a gas is paced in a container, the molecules of the gas have little or no intermolecular interaction between them. There is a lot of space between the molecules of the gas.
The gas molecules move at very high speed and collide with each other and with the walls of container.
The collision of these particles with each other is perfectly elastic hence the kinetic energy of the colliding gas particles do not change.
Answer:
Genotypes: Homozygous (GG)=50%, Heterozygous (Gg)=50%.
Phenotypes: Homozygous gray (GG)=50%, Heterozygous gray (Gg)=50% or just Gray=100%
Explanation:
Hello,
The Punnett square for this cross turns into:
It means that the genotypes and phenotypes are:
Genotypes: Homozygous (GG)=50%, Heterozygous (Gg)=50%.
Phenotypes: Homozygous gray (GG)=50%, Heterozygous gray (Gg)=50% or just Gray=100%
Best regards.