<u>Answer:</u> The number of moles of gas present is 0.276 moles
<u>Explanation:</u>
To calculate the number of moles of gas, we use the equation given by ideal gas:
PV = nRT
where,
P = Pressure of the gas = 725 mm Hg
V = Volume of the gas = 7.55 L
n = number of moles of gas = ?
R = Gas constant = 
T = Temperature of the gas = 
Putting values in above equation, we get:

Hence, the number of moles of gas present is 0.276 moles
Answer:
It is a covalent bond because both carbon and oxygen are nonmetals. The formula will be CO² because the electrons between the atoms are being shared equally.
Answer:
Rubidium
Explanation:
Rubidium is an alkali metal that has 37 protons 48 neutrons and 1 valence electron
Answer:
0.600 g/cm³
Explanation:
Step 1: Given data
- Height of the cylinder (h): 6.62 cm
- Diameter of the cylinder (d): 2.34 cm
- Mass of the cylinder (m): 17.1 g
Step 2: Calculate the volume of the cylinder
First, we have to determine the radius, which is half of the diameter.
r = d/2 = 2.34 cm/2 = 1.17 cm
Then, we use the formula for the volume of the cylinder.
V= π × r² × h
V= π × (1.17 cm)² × 6.62 cm
V = 28.5 cm³
Step 3: Calculate the density (ρ) of the sample
The density is equal to the mass divided by the volume.
ρ = m/V
ρ = 17.1 g/28.5 cm³
ρ = 0.600 g/cm³
Answer:
The chemistry will need 2*10⁶ moles of antimony trifluoride.
Explanation:
The balanced reaction is:
3 CCl₄ (g) + 2 SbF₃ (s) → 3 CCl₂F₂(g) + 2 SbCl₃ (s)
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of each compound participate in the reaction:
- CCl₄: 3 moles
- SbF₃: 2 moles
- CCl₂F₂: 3 moles
- SbCl₃: 2 moles
You can apply the following rule of three: if by reaction stoichiometry 3 moles of freon are produced by 2 moles of antimony trifluoride, 3*10⁶ moles of Freon are produced from how many moles of antimony trifluoride?

moles of antimony trifluoride= 2*10⁶
<u><em>The chemistry will need 2*10⁶ moles of antimony trifluoride.</em></u>