Answer:
a) KOH
Explanation:
In the given balanced reaction
2K + 2H2O → 2KOH + H2
In the compound KOH,
The elements are K,O, and H and in the compound, there is one mole each of K , O ,and H.
So the element ratio here is 1 : 1 : 1.
Answer:
C. 1.17 grams
Explanation:
- The molarity is the no. of moles of solute in a 1.0 L of the solution.
<em>M = (mass/molar mass)solute x (1000/ V)</em>
M = 0.1 M, mass = ??? g, molar mass of NaCl = 58.44 g/mol, V = 200.0 mL.
∴ mass of NaCl = (M)(molar mass)(V)/1000 = (0.1 M)(58.44 g/mol)(200.0 mL)/1000 = 1.168 g ≅ 1.17 g.
The equilibrium expression shows the ratio between
products and reactants. This expression is equal to the concentration of the
products raised to its coefficient divided by the concentration of the
reactants raised to its coefficient. The correct equilibrium expression for the
given reaction is:<span>
<span>H2CO3(aq) + H2O(l) = H3O+(aq) + HCO3-1(aq)
Kc = [HCO3-1] [H3O+] / [H2O] [H2CO3]</span></span>
Answer:
The change in the internal energy of the system -878 J
Explanation:
Given;
energy lost by the system due to heat, Q = -1189 J (negative because energy was lost by the system)
Work done on the system, W = -311 J (negative because work was done on the system)
change in internal energy of the system, Δ U = ?
First law of thermodynamics states that the change in internal energy of a system (ΔU) equals the net heat transfer into the system (Q) minus the net work done by the system (W).
ΔU = Q - W
ΔU = -1189 - (-311)
ΔU = -1189 + 311
ΔU = -878 J
Therefore, the change in the internal energy of the system -878 J
If that is your picture, then the answer is that
Geometry A is trigonal planarand Geometry B is trigonal pyramidal