Answer:
Hey there!
This is already rounded to four significant figures!
Zeroes after the decimal but before the 7 don't count, and 7, 0, 6, and 2 count as significant figures.
So, the answer would be 0.007062.
Let me know if this helps :)
Answer:

Explanation:
At constant pressure Thermal energy always moves from a greater energy level to a lesser energy level, laws of thermodynamics prove that.
Nature always likes to attain equilibrium either it's movement of heat energy or flow of water from higher region to lower region. The first and second law of thermodynamics are profe of that, the first law says that the total energy of universe is Constant. Energy can not be destroyed it always changes from one form to another, by work and heat. The second law explains why thermal energy moves from a greater energy level to a lesser energy level, it deals with the change in entropy of a system and surrounding and states heat flows from hot environment to cold environment.
<em><u>Thanks for joining brainly community!</u></em>
Answer:
Photosynthetic bacteria must take in <u>Carbon Dioxide</u> to live, and they release <u>Oxygen </u> . Animals must take <u>Oxygen </u> to live, and they release <u>Carbon Dioxide.</u>
Explanation:
Photosynthesis:
It is the process in which in the presence of sun light and chlorophyll by using carbon dioxide and water plants produce the oxygen and glucose.
Carbon dioxide + water + energy → glucose + oxygen
water is supplied through the roots, carbon dioxide collected through stomata and sun light is capture by chloroplast.
Chemical equation:
6H₂O + 6CO₂ + energy → C₆H₁₂O₆ + 6O₂
Photosynthetic bacteria perform same function as plants. These bacteria contain light harvesting pigments absorb carbon dioxide and release oxygen.
While animals take oxygen and release carbon dioxide to live. This respiration process is opposite to the photosynthesis.
Glucose + oxygen → carbon dioxide + water + 38ATP
<u>Answer:</u> The volume when the pressure and temperature has changed is 
<u>Explanation:</u>
To calculate the volume when temperature and pressure has changed, we use the equation given by combined gas law.
The equation follows:

where,
are the initial pressure, volume and temperature of the gas
are the final pressure, volume and temperature of the gas
Let us assume:
![P_1=1.20atm\\V_1=795mL\\T_1=116^oC=[116+273]K=389K\\P_2=0.55atm\\V_2=?mL\\T_2=75^oC=[75+273]K=348K](https://tex.z-dn.net/?f=P_1%3D1.20atm%5C%5CV_1%3D795mL%5C%5CT_1%3D116%5EoC%3D%5B116%2B273%5DK%3D389K%5C%5CP_2%3D0.55atm%5C%5CV_2%3D%3FmL%5C%5CT_2%3D75%5EoC%3D%5B75%2B273%5DK%3D348K)
Putting values in above equation, we get:

Hence, the volume when the pressure and temperature has changed is 
Answer:
See the attached image
Explanation:
The first step is the production of the <u>carboanion</u> in the
compound. We will get the <u>negative charge</u> on the methyl group and the <u>positive charge</u> in the Li atom.
Then the carboanion can <u>attack the acetone</u>. The double bond of the oxo group would <u>delocalized</u> upon the oxygen, generating a positive charge in the carbon that can be attacked by the carboanion formaiting a <u>new C-C bond</u>.