Answer:
The spectator ions is:
and 
Explanation:
The equation of reaction between H₂ SO₄ and KOH is:

Rewriting this equation as ionic;
![[2H^{+} + SO^{2-}_4 + 2K^+ +2OH^- \to 2K^+ SO_4^{2-} + 2H_2O ]](https://tex.z-dn.net/?f=%5B2H%5E%7B%2B%7D%20%2B%20SO%5E%7B2-%7D_4%20%2B%202K%5E%2B%20%2B2OH%5E-%20%5Cto%202K%5E%2B%20%20SO_4%5E%7B2-%7D%20%2B%202H_2O%20%5D)
Spectators ions are ions present on both sides of the ionic equation by the same quantity but do not take part in the net reaction.
<u>Answer:</u> No crystals of potassium sulfate will be seen at 0°C for the given amount.
<u>Explanation:</u>
We are given:
Mass of potassium nitrate = 47.6 g
Mass of potassium sulfate = 8.4 g
Mass of water = 130. g
Solubility of potassium sulfate in water at 0°C = 7.4 g/100 g
This means that 7.4 grams of potassium sulfate is soluble in 100 grams of water
Applying unitary method:
In 100 grams of water, the amount of potassium sulfate dissolved is 7.4 grams
So, in 130 grams of water, the amount of potassium sulfate dissolved will be 
As, the soluble amount is greater than the given amount of potassium sulfate
This means that, all of potassium sulfate will be dissolved.
Hence, no crystals of potassium sulfate will be seen at 0°C for the given amount.
Answer:
Baking soda
Explanation:
Due to its neutralizing properties, sodium bicarbonate can be used to counteract the acid corrosion of car batteries. To use baking soda, in this case, be sure to disconnect the battery terminals before cleaning. Make a paste of three parts baking soda to one part water and apply with a damp cloth to rub the corrosion of the battery terminal. After cleaning and reconnecting the terminals, clean them with petroleum jelly to prevent future corrosion.
The volume of a gas is the same as its CONTAINER.
Gases generally has no shape and no definite volume. When a gas is placed in a container, the gas usually takes the shape and the volume of the container, that is, the gas fills up all the available spaces in the container. Thus, the volume of a gas will always be the same as its container. This is in contrast with solids, which have definite shape and volume and liquids, which have definite volume but no fixed shape.
Explanation:
I don't understand your question....
thank you