Answer:
4.00 is the pH of the mixture
Explanation:
The ethyl amine reacts with HNO3 as follows:
C2H5NH2 + HNO3 → C2H5NH3⁺ + NO3⁻
To solve this question we need to find the moles of ethyl amine and the moles of HNO3:
<em>Moles C2H5NH2:</em>
0.0500L * (0.100mol/L) = 0.00500 moles ethyl amine
<em>Moles HNO3:</em>
0.201L * (0.025mol/L) = 0.005025 moles HNO3
That means HNO3 is in excess. The moles in excess are:
0.005025 moles HNO3 - 0.00500 moles ethyl amine =
2.5x10⁻⁵ moles HNO₃
In 50 + 201mL = 251mL = 0.251L:
2.5x10⁻⁵ moles HNO₃ / 0.251L = 9.96x10⁻⁵M = [H+]
As pH = -log [H+]
pH = -log 9.96x10⁻⁵M
pH = 4.00 is the pH of the mixture
430 g of AgCl would be needed to make a 4.0m solution with a volume of 0.75 L.
<h3>What is Molarity?</h3>
- The amount of a substance in a specific volume of solution is known as its molarity (M).
- The number of moles of a solute per liter of a solution is known as molarity.
<h3>Calculation of Required amount of AgCl</h3>
Remember that mol/L is the unit of molarity (M).
We can compute the necessary number of moles of solute by multiplying the concentration by the liters of solution, according to dimensional analysis.
0.75L×4.0M=3.0mol
Then, using the periodic table's molar mass for AgCl, convert from moles to grams:
3.0mol×143.321gmol=429.963g
The final step is to round to the correct significant figure, which in this case is two: 430g.
Hence, 430 g of AgCl would be needed to make a 4.0m solution with a volume of 0.75 L.
Learn more about Molarity here:
brainly.com/question/8732513
#SPJ4
See the image below.
An excited electron is in a <em>high-energy state</em>.
When it drops to the lower-level ground state, it must get rid of this excess energy by <em>emitting it</em> as a quantum of light.
Idk to explain this but the answer is Solid...i think...