Answer:
Kc = [CH₄] / [H₂]²
Kp = [CH₄] / [H₂]² * (0.082*T)^-1
Explanation:
Equilibrium constant, Kc, is defined as the ratio of the concentrations of the products over the reactants. Also, each concentration of product of reactant is powered to its coefficient.
<em>Pure solids and liquids are not taken into account in an equilibrium</em>
Thus, for the reaction:
C(s)+ 2H₂(g) ⇌ CH₄(g)
Equilibrium constant is:
<h3>Kc = [CH₄] / [H₂]²</h3>
Now, using the formula:
Kp = Kc* (RT)^Δn
<em>Where R is gas constant (0.082atmL/molK), T is the temperature of the reaction and Δn is difference in coefficients of gas products - coefficients of gas reactants (1 - 2= -1)</em>
Replacing:
<h3>Kp = [CH₄] / [H₂]² * (0.082*T)^-1</h3>
<em />
In here Oxygen is the central atom. It makes two bonds with
Cl and has two lone pairs. Since, the shape is bent and the hybridization is
sp3. Molecular geometry is a bit dissimilar from hybridization. Hybridization
is reliant on the number of bonds and lone pairs. Since O has two bonds with
Cl, its hybridization is sp3. It is like is this: 1 lone pair/bond = s. 2 lone
pairs/bond = sp 3 lone pairs/bonds = sp2, etc. molecular geometry, you count
the number of bonds and lone pairs. This has two bonds and 2 lone pairs so if
they were all bonds, the molecule would be tetrahedral.
A mineral occurs naturally, meaning that even though there are artificial substances that might be described as mineral-like they are not minerals