Answer:
Step-by-step explanation:
ill try this one in a few minutes for you.
Answer:
A, B, F
Step-by-step explanation:
2/3 - x + 1/6 = 6x
Collect like terms
2/3 + 1/6 = 6x + x
(4+1) / 6 = 7x
5/6 = 7x
x = 5/6 ÷ 7
= 5/6 × 1/7
x = 5/42
a) 4 - 6x + 1 = 36x
4 + 1 = 36x + 6x
5 = 42x
x = 5/42
Equivalent to the last step of the simplification above
b) 5/6 - x = 6x
5/6 = 6x + x
5/6 = 7x
This is equivalent to the third step of the simplification
c) 4 - x + 1 = 6x
4 + 1 = 6x + x
5 = 7x
x = 5/7
Not equivalent to any of the steps in the simplification above
d) 5/6 + x = 6x
5/6 = 6x - x
5/6 = 5x
x = 5/6 ÷ 5
= 5/6 × 1/5
x = 5/30
Not equivalent to any of the steps in the simplification above
e) 5 = 30x
x = 5/30
Not equivalent to any of the steps in the simplification above
f) 5 = 42x
x = 5/42
Equivalent to the last step of the simplification above
Make 2 equations let x=150 y=600/180000 than plug and chug
Answer:
9 min
Step-by-step explanation.
half of ten is 5 and half of 8 is 4 and 4 + 5 = 9
Using the equation of the test statistic, it is found that with an increased sample size, the test statistic would decrease and the p-value would increase.
<h3>How to find the p-value of a test?</h3>
It depends on the test statistic z, as follows.
- For a left-tailed test, it is the area under the normal curve to the left of z, which is the <u>p-value of z</u>.
- For a right-tailed test, it is the area under the normal curve to the right of z, which is <u>1 subtracted by the p-value of z</u>.
- For a two-tailed test, it is the area under the normal curve to the left of -z combined with the area to the right of z, hence it is <u>2 multiplied by 1 subtracted by the p-value of z</u>.
In all cases, a higher test statistic leads to a lower p-value, and vice-versa.
<h3>What is the equation for the test statistic?</h3>
The equation is given by:

The parameters are:
is the sample mean.
is the tested value.
- s is the standard deviation.
From this, it is taken that if the sample size was increased with all other parameters remaining the same, the test statistic would decrease, and the p-value would increase.
You can learn more about p-values at brainly.com/question/26454209