Answer:
, the minus meaning west.
Explanation:
We know that linear momentum must be conserved, so it will be the same before (
) and after (
) the explosion. We will take the east direction as positive.
Before the explosion we have
.
After the explosion we have pieces 1 and 2, so
.
These equations must be vectorial but since we look at the instants before and after the explosions and the bomb fragments in only 2 pieces the problem can be simplified in one dimension with direction east-west.
Since we know momentum must be conserved we have:

Which means (since we want
and
):

So for our values we have:

Answer:
49.63 degree
Explanation:
thickness of glass slab, t = 0.6 cm
angle of incidence = 59 degree
Let r be the angle of refraction
The refractive index of glass, ng = 3/2
refractive index of water, nw = 4/3
refarctive index of glass with respect to water = ng / nw = 3 /2 ÷ 4 /3 = 9 / 8
So, by use of Snell's law
Refractive index of glass with respect to water = Sin i / Sin r
9 / 8 = Sin 59 / Sin r
9 / 8 = 0.857 / Sin r
Sin r = 0.7619
r = 49.63 degree
Explanation:
You need two, maybe three things - something that's vibrating, a medium for those vibrations to propagate in, and a listener to hear it or recording equipment to pick it up
Take a look at a simple reaction like the one below:
In this reaction some reactant A is turned into some product B. The rate of reaction can be represented by a decrease in concentration of A over time or as the increase of B over time. This is written: