Answer:
Explanation:
Given
When we drop an object from height , suppose h
it takes time T
using equation of motion

where




here
because it dropped from a certain height


When height is increases to three times of original height
i.e. 
then time period becomes


Answer:
C
Explanation:
this is because i need more space
Answer: 196 minutes
Explanation: 26.22/9.50 = 2.76
2 hours and 76 minutes equals 196 minutes
Answer:
Part a)

Part b)

Part C)

Part d)
Due to large magnitude of friction between road and the car the momentum conservation may not be valid here as momentum conservation is valid only when external force on the system is zero.
Explanation:
Part a)
As we know that car A moves by distance 6.1 m after collision under the frictional force
so the deceleration due to friction is given as



now we will have




Part b)
Similarly for car B the distance of stop is given as 4.4 m
so we will have


Part C)
By momentum conservation we will have



Part d)
Due to large magnitude of friction between road and the car the momentum conservation may not be valid here as momentum conservation is valid only when external force on the system is zero.
Answer:
Amplitude = 8 Volts
Frequency = 0.067 kHz
Explanation:
Note: The missing picture in question is attached for your review.
Given:
Volts/Div = 2 V/div
Time/Div = 5 msec/div
Finding Amplitude:
Now, as you can see in the attached picture, there are 4 division between two peaks of the waveform, so,

(Multiplying by 2 V/div because oscilloscope dial is set at 2 V/div)
Finding Frequency:
As can be seen in attached picture, 3 division are there for one complete cycle of waveform,so,

Since,
