Answer:
7/12
Step-by-step explanation:
Probability = number of ways desired result can happen/total number of outcomes.
There are a total of 12 marbles, so the denominator is 12.
Since the only non-yellow-or-blue marble color is orange, that is the desired result. There are 7 orange marbles, so the numerator is 7.
7/12
Probability = (number of ways to succeed) / (total possible outcomes) .
The total possible results of rolling two dice is
(6 on the first cube) x (6 on the second one) = 36 possibilities.
How many are successful ? I need you to clarify something first.
You said that the 'second die' shows an odd number. When a pair
of dice is rolled, the problem usually doesn't distinguish between them.
And in fact, you said that they're "tossed together" (like a spinach and
arugula salad ?) so I would understand that they would lose their identity
unless they were, say, painted different colors, and we wouldn't know
which one is the second one.
Oh well, I'll just work it both ways:
First way:
Two identical dice are tossed.
The total is 5 and ONE cube shows an odd number.
How can that happen ?
1 ... 4
4 ... 1
3 ... 2
2 ... 3
Four possibilities. Probability = 4/36 = 1/9 = 11.1% .
=======================================
Second way:
A black and a white cube are tossed together.
The total is 5 and the white cube shows an odd number.
How can that happen:
B ... W
4 .... 1
2 .... 3
Only two possibilities. Probability = 2/36 = 1/18 = 5.6% .
Answer:
6 pounds
Step-by-step explanation:
if you lose 6 pounds and gain 6 pounds that make it a net change of 0 pounds
Step 1: We make the assumption that 498 is 100% since it is our output value.
Step 2: We next represent the value we seek with $x$x.
Step 3: From step 1, it follows that $100\%=498$100%=498.
Step 4: In the same vein, $x\%=4$x%=4.
Step 5: This gives us a pair of simple equations:
$100\%=498(1)$100%=498(1).
$x\%=4(2)$x%=4(2).
Step 6: By simply dividing equation 1 by equation 2 and taking note of the fact that both the LHS
(left hand side) of both equations have the same unit (%); we have
$\frac{100\%}{x\%}=\frac{498}{4}$
100%
x%=
498
4
Step 7: Taking the inverse (or reciprocal) of both sides yields
$\frac{x\%}{100\%}=\frac{4}{498}$
x%
100%=
4
498
$\Rightarrow x=0.8\%$⇒x=0.8%
Therefore, $4$4 is $0.8\%$0.8% of $498$498.
The answer is b hope it helped