Answer:
A. Kilo , K, multiplication by 1000
B. Centi, c
C. Deci, d
D. Mili, m
E. Mega, M
F. Micro, u
Answer:
Dry ice undergoes sublimation, an endothermic change at room temperature.
Answer:
The energy levels in an atom are similar to the rungs of a ladder, but they get closer together as they get farther from the nucleus. For an electron to move from one energy level to the next higher level, it must gain the right amount of energy. If less than that amount is available, the electron stays where it is.
Explanation:
Hope this helped! Goodluck on your test or whatever you're doing! Stay safe ♥♥♥
(a) One form of the Clausius-Clapeyron equation is
ln(P₂/P₁) = (ΔHv/R) * (1/T₁ - 1/T₂); where in this case:
Solving for ΔHv:
- ΔHv = R * ln(P₂/P₁) / (1/T₁ - 1/T₂)
- ΔHv = 8.31 J/molK * ln(5.3/1.3) / (1/358.96 - 1/392.46)
(b) <em>Normal boiling point means</em> that P = 1 atm = 101.325 kPa. We use the same formula, using the same values for P₁ and T₁, and replacing P₂ with atmosferic pressure, <u>solving for T₂</u>:
- ln(P₂/P₁) = (ΔHv/R) * (1/T₁ - 1/T₂)
- 1/T₂ = 1/T₁ - [ ln(P₂/P₁) / (ΔHv/R) ]
- 1/T₂ = 1/358.96 K - [ ln(101.325/1.3) / (49111.12/8.31) ]
(c)<em> The enthalpy of vaporization</em> was calculated in part (a), and it does not vary depending on temperature, meaning <u>that at the boiling point the enthalpy of vaporization ΔHv is still 49111.12 J/molK</u>.