The physical explanation is that increasing temperature increases the kinetic energy of the gas molecules. Hence, their random motion breaks more intermolecular bonds and the gas is less dissolved in the solvent. In contrast, solid solutes in water have increased solubility with increased temperatures.
Answer:
Ok so, I would say D) because decreasing the blood glucose is actually recycling the organic chemicals. Your body uses everything in your body, filtering out the unusable chemicals and such.
Explanation:
Science :3
Answer:
Kyanite (Al2SiO5) - silicate
Ilmenite (FeTiO3) - Oxides
Rhodochrosite (MnCO3) - carbonate
Celestite (SrSO4) - sulphate
Chalcocite (Cu2S) - sulphide
Explanation:
Minerals are classified according to their chemical composition. For example those that hve the CO32- ion are called carbonates and those with the SO42- ion are called sulphates while the ones with S2- ion are called sulphides
Answer:
17.1 mol
Explanation:
(8.68g/mL * 125 mL) = 1085 g
1085 g/ (63.55 g/mol) = 17.1 mol
The atoms that would be expected to be diamagnetic in the ground state is magnesium
The magnetism of an atom refers to its electronic configuration. A diamagnetic atom is an atom whose electrons are all paired.
A paired electron is an electron that occurs in pairs in its orbital shell.
At their respective ground state, the electronic configuration of the given elements are as follows:
The electronic configuration of magnesium is 1s²2s²2p⁶3s². As such its a diamagnetic atom.
The electronic configuration of Potassium is 1s²2s²2p⁶3s²3p⁶4s¹. Hence, Potassium has one unpaired electron in its outermost shell.
The electronic configuration of Chlorine is 1s²2s²2p⁶3s²3p⁵. Hence, Chlorine has one unpaired electron in its outermost shell.
The electronic configuration of Cobalt is 1s²2s²2p⁶3s²3p⁶3d⁷4s². Hence, the unpaired electrons of Cobalt in its outermost shell are three.
Therefore, the atoms that are diamagnetic in the ground state is magnesium.
Learn more about diamagnetic atoms here:
brainly.com/question/18865305?referrer=searchResults