The reaction between C2H2 and O2 is as follows:
2C2H2 + 5O2 = 4CO2 + 2H2O
After balancing the equation, the reaction ratio between C2H2 and O2 is 2:5.
The moles of O2 in this reaction is 84.0 mol. According to the above ratio, the moles of C2H2 needed to react completely with the O2 is 84.0mole *2/5 = 33.6 mole.
There are 20.5 x 10^24 molecules are present in 3.4 moles of NH4NO3.
<h3>How many molecules in 3.4 moles of NH4NO3?</h3>
We know that one mole of a substance has 6.022 × 10²³ molecules so in 3.4 moles of NH4NO3, we have 20.5 x 10^24 molecules if we multiply the 6.022 × 10²³ with 3.4.
So we can conclude that there are 20.5 x 10^24 molecules are present in 3.4 moles of NH4NO3.
Learn more about mole here: brainly.com/question/15356425
#SPJ1
A Thermochemical Equation is a balanced stoichiometric chemical equation that includes the enthalpy change, ΔH. In variable form, a thermochemical equation would look like this:
A + B → CΔH = (±) #
Where {A, B, C} are the usual agents of a chemical equation with coefficients and “(±) #” is a positive or negative numerical value, usually with units of kJ.
please mark as brainliest
The answer to your question is A. Wrought iron because amongst its other properties, wrought iron becomes soft at red heat, and can be easily be forged and forge welded.