Boron: isotope data. Both isotopes ofBoron, B-10 and B-11, are used extensively in the nuclear industry. B-10 is used in the form of boric acid as a chemical shim in pressurized water reactors while in the form of sodium pentaborate it is used for standby liquid control systems in boiling water reactors
Answer:
The answer to your question is: c) ATP
Explanation:
a) Carbon dioxide this molecule is a product of cell respiration so is very important for the cells but it isn't a form of energy cash, then this option is wrong.
b)Glucose: this molecule is used in the cell respiration process, from it the cell obtain ATP, but it isn't the energy cash for the cell.
c) ATP: this molecule is used by the cell to obtain energy, when an enzyme cuts off the phosphate bonds of this molecule it gets energy so this is the right answer.
d) Oxygen: oxygen is very important in the cell respiration process but It isn't usedas a energy cash.
/~\ The correct answer is:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<em><u>Hydrogen is a chemical and is </u></em><em><u>found in the sun and most of the stars, </u></em><em><u>and the</u></em><em><u> planet Jupiter</u></em><em><u> is composed mostly of hydrogen. On Earth,</u></em><em><u> </u></em><em><u>hydrogen is found in the</u></em><em><u> greatest quantities as water.</u></em>
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
I hope this helps! /~\
Answer:
t = 1862 s
Explanation:
To do this, we need first to determine the theorical detention time, which can be determined with the following expression:
t₀ = ∀/Q (1)
Where:
t₀: detention time
∀: Volume of the fluid in the reactor
Q: Flow rate in the reactor
With this time, we must use the following expression to determine the time that the workers will take to vent the tank:
C = C₀ e^(-t/t₀) (2)
From here, we must solve for time t, and the expression will be:
t = ln(C₀/C) * t₀ (3)
Now that we know the expression to use, let's solve for t. Using (1) to determine the detention time, ∀ is 1900 m³, and Q is 2.35 m³/s so:
t₀ = 1900 / 2.35 = 808.51 s
Now, let's solve for the time t. C will be 0.0015 mg/L (or 1.5 mg/m³ cause in 1 m³ we have 1000 L) and C₀ 15 mg/m³:
t = ln(15/1.5) * 808.51
<h2>
t = 1861.66 s or simply 1862 s</h2><h2>
</h2>
Hope this helps
Explanation:
Below is an attachment containing the solution