F=mv^2/R
----> V^2=FR/m=(350x0.9)/2.5=126
----- V=11.22 m/s
Two terminal device which can maintain a fixed voltage. Hope this help I need more detail in your question this is all I can provide. :)
Answer:
(a) F = 320
(b) = F = -5.1625
Explanation:
The formula that converts degree Celsius (C) to degree Fahrenheit (F) is:
F = 1.8C + 32
Solving (a): F = 2C
Substitute 2C for F in the above equation
F = 1.8C + 32
2C = 1.8C + 32
Collect like terms
2C - 1.8C = 32
0.2C = 32
Multiply both sides by 5
5 * 0.2C = 32 * 5
C = 160
Recall that F = 2C
F = 2 * 160
F = 320
Solving (b): F = ¼C
Substitute ¼C for F in the above formula
F = 1.8C + 32
¼C = 1.8C + 32
Convert fraction to decimal
0.25C = 1.8C + 32
Collect like terms
0.25C - 1.8C = 32
-1.55C = 32
Divide both sides by -1.55
C = 32/(-1.55)
C = -32/1.55
C = -20.65
Recall that: F = ¼C
F = -¼ * 20.65
F = -5.1625

Actually Welcome to the concept of Efficiency.
Here we can see that, the Input work is given as 2.2 x 10^7 J and the efficiency is given as 22%
The efficiency is => 22% => 22/100.
so we get as,
E = W(output) /W(input)
hence, W(output) = E x W(input)
so we get as,
W(output) = (22/100) x 2.2 x 10^7
=> W(output) = 0.22 x 2.2 x 10^7 => 0.484 x 10^7
hence, W(output) = 4.84 x 10^6 J
The useful work done on the mass is 4.84 x 10^6 J