6.52 × 10⁴ L. (3 sig. fig.)
<h3>Explanation</h3>
Helium is a noble gas. The interaction between two helium molecules is rather weak, which makes the gas rather "ideal."
Consider the ideal gas law:
,
where
is the pressure of the gas,
is the volume of the gas,
is the number of gas particles in the gas,
is the ideal gas constant, and
is the absolute temperature of the gas in degrees Kelvins.
The question is asking for the final volume
of the gas. Rearrange the ideal gas equation for volume:
.
Both the temperature of the gas,
, and the pressure on the gas changed in this process. To find the new volume of the gas, change one variable at a time.
Start with the absolute temperature of the gas:
,
.
The volume of the gas is proportional to its temperature if both
and
stay constant.
won't change unless the balloon leaks, and- consider
to be constant, for calculations that include
.
.
Now, keep the temperature at
and change the pressure on the gas:
,
.
The volume of the gas is proportional to the reciprocal of its absolute temperature
if both
and
stays constant. In other words,
(3 sig. fig. as in the question.).
See if you get the same result if you hold
constant, change
, and then move on to change
.
Capillary action is defined as the ability of a liquid to go up a narrow space without the help or opposition of external forces. One of the most important factors affecting capillary action is the intermolecular forces within a substance. The higher the IMF, the greater the capillary action. The H-bonding in water gives it greater IMF than acetone, so water has greater capillary action.
Here is a universal law to balance chemical equations :
All chemical equations must be balanced
because of the law of conservation of mass.
It states that "matter
cannot be created or destroyed."
So, the number of atoms that you
start with at the beginning of the reaction must equal the number
of atoms that you end up with.
keeping this law in our mind,lets balance the<span> equation for the reaction of benzene and hydrogen to form cyclohexane.
</span><span>C 6 H 6 + H 2 → C 6 H 12.
Here is the balance chemical equation.
</span><span>2 C 6 H 6 + 6 H 2 → 2 C 6 H 12.</span>
Answer:
: conjugate acid of 
: conjugate base of 
: conjugate base of 
: conjugate acid of 
Explanation:
According to the Bronsted-Lowry conjugate acid-base theory, an acid is defined as a substance which looses donates protons and thus forming conjugate base and a base is defined as a substance which accepts protons and thus forming conjugate acid.

Here in forward reaction
is accepting a proton, thus it is considered as a base and after accepting a proton, it forms
which is a conjugate acid.
And
is losing a proton, thus it is considered as an acid and after loosing a proton, it forms
which is a conjugate base.
Similarly in the backward reaction,
is loosing a proton, thus it is considered as a acid and after loosing a proton, it forms
which is a conjugate base.
And
is accepting a proton, thus it is considered as a base and after accepting a proton, it forms
which is a conjugate acid.