The grandfather clock will now run slow (Option A).
<h3>What is Time Period of an oscillation?</h3>
- The time period of an oscillation refers to the time taken by an object to complete one oscillation.
- It is the inverse of frequency of oscillation; denoted by "T".
Now,
, where L is the length and g is the gravitational constant, is the formula for a pendulum's period. - The period will increase as one climbs a very tall mountain because g will slightly decrease.
- Due to this and the previous issue, the clock runs slowly and it seems that one second is longer than it actually is.
Hence, the grandfather clock will now run slow (Option A).
To learn more about the time period of an oscillation, refer to the link: brainly.com/question/26449711
#SPJ4
If a battery with a potential difference of 1.5 volts is placed across the plates, the maximum capacitor will have a charge of 36 V.
<h3>What possible variations are there in a 1.5 volt battery?</h3>
1 V is, by definition, a potential energy differential between two places equal to one joule for every coulomb of charge. Your query is resolved by that. Between the sites where that potential difference is measured, 1.5V denotes a potential energy differential of 1.5 joules per coulomb.
<h3>How do you determine the difference in potential energy?</h3>
ΔV=VB−VA=ΔPEq. By dividing the potential energy of a charge q that has been transported from point A to point B by the charge, we may define the potential difference between points A and B as VBVA. The joules per coulomb, sometimes known as volts (V) in honor of Alessandro Volta, are the units of potential difference.
To know more about potential energy difference visit ;
brainly.com/question/12807194?
#SPJ4
Answer:
Mechanical longitudinal waves are also called compressional or compression waves, because they produce compression and rarefaction when traveling through a medium, and pressure waves, because they produce increases and decreases in pressure.
Explanation: