In longitudinal waves, the motion of the particles in a medium is across the direction of the wave.
Answer:
0.85V
Explanation:
The emf is calculated by using the Lenz's Law

But for this case we have that the magnetic field is constant. Hence we have

where we have taken that the intial time is t1=0
I hope this is useful for you
regards
Answer:

Explanation:
The standard form of the 2nd order differential equation governing the motion of mass-spring system is given by

Where m is the mass, ζ is the damping constant, and k is the spring constant.
The spring constant k can be found by




The damping constant can be found by



Finally, the mass m can be found by



Where g is approximately 32 ft/s²

Therefore, the required differential equation is


The initial position is

The initial velocity is

Answer:
= 5/9
Explanation:
This is an exercise that we can solve using Archimedes' principle which states that the thrust is equal to the weight of the desalted liquid.
B = ρ_liquid g V_liquid
let's write the translational equilibrium condition
B - W = 0
let's use the definition of density
ρ_body = m / V_body
m = ρ_body V_body
W = ρ_body V_body g
we substitute
ρ_liquid g V_liquid = ρ_body g V_body
In the problem they indicate that the ratio of densities is 5/9, we write the volume of the bar
V = A h_bogy
Thus
we substitute
5/9 = 