The forward force you exert on the fish and your backward action will allow you to reach the shore.
<h3>
Newton's third law of motion</h3>
Newton's third law of motion states that for every action, there is an equal and opposite reaction.
Fa = -Fb
Let's assume the fish is held in the hook, this will give you the opportunity to throw the fish forward while still holding it.
When the the fish is thrown forward, you will move backwards with an equal force based on Newton's third law. Your backward momentum towards the shore will help to maintain equal linear momentum between you and the fish.
Thus, this forward force of the fish and your backward action will allow you to reach the shore.
Learn more Newton's third law of motion here: brainly.com/question/25998091
Answer:
Answer:
New speed of the 22-kg block is 1.57 m/s
Explanation:
Mass of block
Mass of another block
Initial speed of the block
Initial speed of the another block
Initial speed of the another block
For conservation of momentum, we have
Substitute all the values and solving for final speed of the 22kg block is
new speed of the 22-kg block is 1.57 m/s
Couldnt write the answer so check picture
Answer:
I HOPE THIS IS CORRECT
Explanation:
It is heated from 20°C to 80°C. We need to find the heat absorbed. It can be given by the formula as follows : So, 1386 J of heat is absorbed.
]A force called the effort force is applied at one point on the lever in order to move an object, known as the resistance force, located at some other point on the lever.
The way levers work is by multiplying the effort exerted by the user. Specifically, to lift and balance an object, the effort force the user applies multiplied by its distance to the fulcrum must equal the load force multiplied by its distance to the fulcrum. Consequently, the greater the distance between the effort force and the fulcrum, the heavier a load can be lifted with the same effort force.