Answer:
4.80 seconds
Explanation:
The velocity of sound is obtained from;
V= 2d/t
Where;
V= velocity of sound = 329.2 ms-1
d= distance from the wall = 790.5 m
t= time = the unknown
t= 2d/V
t= 2 × 790.5/ 329.2
t= 4.80 seconds
Definitely D. The brakes on a bike rub against the wheel. Not sure about the others.
Answer:
Ф = 2.179 eV
Explanation:
This exercise has electrons ejected from a metal, which is why it is an exercise on the photoelectric effect, which is explained assuming the existence of energy quanta called photons that behave like particles.
E = K + Ф
the energy of the photons is given by the Planck relation
E = h f
we substitute
h f = K + Ф
Ф= hf - K
the speed of light is related to wavelength and frequency
c = λ f
f = c /λ
Φ =
let's reduce the energy to the SI system
K = 0.890 eV (1.6 10⁻¹⁹ J / 1eV) = 1.424 10⁻¹⁹ J
calculate
Ф = 6.63 10⁻³⁴ 3 10⁸/405 10⁻⁹ -1.424 10⁻¹⁹
Ф = 4.911 10⁻¹⁹ - 1.424 10⁻¹⁹
Ф = 3.4571 10⁻¹⁹ J
we reduce to eV
Ф = 3.4871 10⁻¹⁹ J (1 eV / 1.6 10⁻¹⁹ J)
Ф = 2.179 eV
Answer:
a)
, b) 
Explanation:
The magnitude of torque is a form of moment, that is, a product of force and lever arm (distance), and force is the product of mass and acceleration for rotating systems with constant mass. That is:



Where
is the angular acceleration, which is constant as torque is constant. Angular deceleration experimented by the unpowered flywheel is:


Now, angular velocities of the unpowered flywheel at 50 seconds and 100 seconds are, respectively:
a) t = 50 s.


b) t = 100 s.
Given that friction is of reactive nature. Frictional torque works on the unpowered flywheel until angular velocity is reduced to zero, whose instant is:


Since
, then the angular velocity is equal to zero. Therefore:
