In an arithmetic sequence, the difference between consecutive terms is constant. In formulas, there exists a number
such that

In an geometric sequence, the ratio between consecutive terms is constant. In formulas, there exists a number
such that

So, there exists infinite sequences that are not arithmetic nor geometric. Simply choose a sequence where neither the difference nor the ratio between consecutive terms is constant.
For example, any sequence starting with

Won't be arithmetic nor geometric. It's not arithmetic (no matter how you continue it, indefinitely), because the difference between the first two numbers is 14, and between the second and the third is -18, and thus it's not constant. It's not geometric either, because the ratio between the first two numbers is 15, and between the second and the third is -1/5, and thus it's not constant.
Answer:
Step-by-step explanation:
Given that there are 3 sets such that there are 100 elements in A1, 1000 in A2, and 10,000 in A3
a) If A1 ⊆ A2 and A2 ⊆ A3
then union will contain the same number of elements as that of A3
i.e. 
b) If the sets are pairwise disjoint.
union will contain the sum of elements of each set

c) If there are two elements common to each pair of sets and one element in all three sets
We subtract common elements pairwise and add common element in 3
i.e. 
Answer:
add up the lengths of all the sides of the ceiling,is there a diagram that comes with this or something?
Step-by-step explanation:
Y = (1/5)x -2
for a perpendicular line, you make the slope the reciprocal of the other equation